

Http:// www.gigalight.com.cn

Optical Network Transceiver Innovator

Gigalight liquid immersion QSFP28 DAC P/N: GLQ-PC101-XXC

Features

- ✓ QSFP28 conforms to the Small Form Factor SFF8665
- ✓ 4-Channel Full-Duplex Passive Copper Cable
- ✓ Copper link length up to 5m
- ✓ Power Supply :+3.3V
- ✓ Low crosstalk
- ✓ Operating Temperature: 0~ 70 °C
- ✓ Maximum aggregate data rate: 100Gb/s (4 x 25.78Gb/s)
- ✓ Improved pluggable form factor compliant for enhanced EMI/EMC performance
- ✓ I²C based two-wire serial interface for EEPROM signature which can be customized
- ✓ ROHS Compliant
- ✓ Special design for liquid immersion environment

Applications

- ✓ 100 Gigabit Ethernet
- ✓ Fiber Channel over Ethernet
- Data storage and communication industry
- ✓ Switch / router / HBA
- ✓ Enterprise network
- ✓ SAN
- ✓ Data Center Network

STANDARDS COMPLIANCE

- ✓ IEEE 802.3bj
- ✓ InfiniBand EDR
- ✓ QSFP28 MSA
- ✓ RoHS Compliant

Product Description

Http:// www.gigalight.com.cr

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Optical Network Transceiver Innovator

QSFP28 cable assemblies are high performance, cost effective I/O solutions for LAN, HPC and SAN. The high speed cable assemblies meet and exceed 100 Gigabit Ethernet, InfiniBand EDR and temperature requirements for performance and reliability. The cables are compliant with SFF-8436 specifications and provide connectivity between devices using QSFP ports.

The Gigalight Technologies GLQ-PC101-XXC is a QSFP28 DAC which specially reliable design to enable liquid immersion environment, it is filled with hot melt glue for a protective layer to prevent the liquid to contact the copper conductor, maintain the good signal integrity. Comparing with normal DAC, this product uses braided and shielding sleeve instead of traditional outer jacket, that can reduce the risk of cooling liquid dissolve the material of outer jacket to dirty the liquid cooling system.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Мах	Unit
Storage Ambient Temperature		-40		+85	°C
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	V _{CC3}	3.14	3.3	3.47	V
Data Rate Per Lane		1		25.78	Gb/s

High Speed Characteristics

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential Impedance(bulk cable)	Rin1,P-P	95	100	110	Ω	
Differential Impedance(cable termination)	Rin3,P-P	85	100	110	Ω	
Insertion loss	SDD21			22.48	dB	At 12.8906 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to	SCC11					
common-mode output return loss	SCC22	2			dB	At 0.2 to 19 GHz
Differential to common-mode	SCD11			See 3	٩D	At 0.01 to 12.89 GHz
return loss	SCD22			See 4	dB	At 12.89 to 19 GHz
				10		At 0.01 to 12.89 GHz
Differential to common Mode Conversion Loss	SCD21			See 5	dB	At 12.89 to 15.7 GHz
				6.3		At 15.7 to 19 GHz

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Http:// www.gigalight.com.cn	Http:// www.gigalight.com.cn			Optical Network Transceiver Innovator			
Channel Operating Margin	COM	3			dB		

Notes:

- 1. Reflection Coefficient given by equation SDD11(dB) < 16.5 2 × SQRT(f), with f in GHz
- 2. Reflection Coefficient given by equation SDD11(dB) < 10.66 14 × log10(f/5.5), with f in GHz
- 3. Reflection Coefficient given by equation SCD11(dB) < 22 (20/25.78)*f, with f in GHz
- 4. Reflection Coefficient given by equation SCD11(dB) < 15 (6/25.78)*f, with f in GHz
- 5. Reflection Coefficient given by equation SCD21(dB) < 27 (29/22)*f, with f in GHz

Mechanical Dimensions

QSFP Horizontal Direction				
CABLE DIAMETER" GUAGE B"		MIN BEND RADIUS"C"	MIN BEND RADIUS"A"	
26AWG	8.5MM	44MM	54MM	

QSFP Horizontal Direction				
CABLE GUAGE	DIAMETER"B1"	MIN BEND RADIUS"C1"	MIN BEND RADIUS"A1"	
26AWG	7MM	35MM	45MM	

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Http:// www.gigalight.com.cn

Optical Network Transceiver Innovator

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes	
1		GND	Ground	1	
2	CML-I	Tx2n	Transmitter Inverted Data Input		
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input		
4		GND	Ground	1	
5	CML-I	Tx4n	Transmitter Inverted Data Input		
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input		
7		GND	Ground	1	
8	LVTTL-I	ModSelL	Module Select		
9	LVTTL-I	ResetL	Module Reset		
10		Vcc Rx	+3.3V Power Supply Receiver	2	
11	LVCMOSI/O	SCL	2-wire serial interface clock		
12	LVCMOSI/O	SDA	2-wire serial interface data		
13		GND	Ground	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Ground	1	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		
18	CML-O	Rx1n	Receiver Inverted Data Output		
19		GND	Ground	1	
20		GND	Ground	1	
21	CML-O	Rx2n	Receiver Inverted Data Output		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		
23		GND	Ground	1	
24	CML-O	Rx4n	Receiver Inverted Data Output		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output		
26		GND	Ground	1	
27	LVTTL-O	ModPrsL	Module Present		
28	LVTTL-O	IntL	Interrupt		
29		Vcc Tx	+3.3V Power supply transmitter	2	
30		Vcc1	+3.3V Power supply	2	
31	LVTTL-I	LPMode	Low Power Mode		

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Http:// www.gigalight.com.cn			Optical Network Transceiver Innovato		
32		GND	Ground	1	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input		
34	CML-I	Tx3n	Transmitter Inverted Data Input		
35		GND	Ground	1	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input		
37	CML-I	Tx1n	Transmitter Inverted Data Input		
38		GND	Ground	1	
Matai	•		•		

Note:

1. GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figure 4. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP+ Module module in any combination. The connector pins are each rated for a maximum current of 500 mA.

Channel insertion loss budget

NOTE—The connector insertion loss is 1.07 dB for the mated test fixture. The host connector is allocated 0.62 dB of additional margin.

Figure 92A-2-35 dB channel insertion loss budget at 12.8906 GHz

Ordering information

Note: Diameter and distance can be customized.

Part Number	GLQ-PC101-XXC				
Length (meter)	1	2	3	4	5
Wire gauge (AWG)	30	30	26/30	26	26

Example:

GLQ-PC101-01C/30AWG

GLQ-PC101-04C/26AWG

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

sales@gigalight.com.cn http://www.gigalight.com

Revision History

Revision	Date	Description
V0	Jun-26-2023	Advance Release.