

25Gbps 850nm SFP28 Immersible Optical Transceiver P/N: GL-S250SR-XXX

Features

- ✓ Hot-pluggable SFP28 form factor
- ✓ Supports 25Gbps data rate
- ✓ Maximum link length of 70m on OM3 MMF and

100m on OM4 MMF

- ✓ 850nm VCSEL laser and PIN photo-detector
- ✓ Internal CDR on both Transmitter and Receiver

channel

- Optional pigtail type and length
- ✓ Single 3.3V power supply
- ✓ Power dissipation < 1W</p>
- ✓ Digital diagnostics functions are available via the I²C interface
- ✓ RoHS compliant
- ✓ Operating case temperature range: 0°C to 60°C

Applications

- ✓ 25GBASE-SR Ethernet
- Liquid immersion environment

Description

The Gigalight Technologies GL-S250-SR is a single-Channel, Pluggable, Fiber-Optic SFP28 for 25 Gigabit Ethernet and Infiniband EDR Applications, it's specially reliable design to enable liquid immersion environment. It is a high performance module for short-range data communication and interconnect applications which operate at 25.78125 Gbps up to 70 m using OM3 fiber or 100 m using OM4 fiber. This module is designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 20 contact edge type connector. This module incorporates Gigalight Technologies proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.

Optical Network Transceiver Innovator

Air cooling compare liquid cooling

As the requirement of data traffic keeping growth and the heat flux emitted by datacenter internal chips increases constantly, traditional air cooling methods are under pressure. Liquid cooling technologies removes the heat more efficiently with dielectric fluids that have high heat capacity to improve the efficiency of energy in datacenter.

Gigalight solved the lack of optical transceivers which perform reliability in immersion even liquid immersion depth up to 10m, the Liquid cooling optical series transceiver is suitable for liquid cooling server & server, this series product are compatible with fluorinated liquid and mineral oils well.

Optical Network Transceiver Innovator

Block Diagram

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	0	3.6	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Table 2 - Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Мах	Unit
Operating Case Temperature	Тс	0		+60	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Power Supply Current	lcc			300	mA
Fiber Length on 50/125µm high-bandwidth (OM3) MMF				70	m
Fiber Length on 50/125µm high-bandwidth (OM4) MMF				100	m
Liquid immersion depth				10	m

Optical Network Transceiver Innovator

Optical and Electrical Characteristics

Table 3 - Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Мах	Unit	Notes
			Transmit	ter		-	
Dat	a rate	BR		25.78		Gbps	
Centre V	Vavelength	λc	840	850	860	nm	
Spectral V	Vidth (-20dB)	σ			0.6	nm	
Average C	Output Power	Pavg	-8.4		2.4	dBm	
Optical F	Power OMA	Рома	-6.4		3	dBm	
Extinct	ion Ratio	ER	2			dB	
Differential d	ata input swing	V _{IN,PP}	40		1000	mV	
Input Differer	ntial Impedance	Z _{IN}	90	100	110	Ω	
TV Disable	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
	<u> </u>		Receive	er			
Dat	a rate	BR		25.78		Gbps	
Centre V	Vavelength	λc	840	850	860	nm	
Receiver Se	nsitivity (OMA)	Psens	-	-	-10	dBm	
Stressed Se	nsitivity (OMA)		-	-	-5.2	dBm	
Receiver F	Power (OMA)				3	dBm	
LOS De-Assert		LOSD			-13	dBm	
LOS Assert		LOS _A	-30			dBm	
LOS Hysteresis			0.5			dB	
Differential da	ata output swing	Vout,PP	300		850	mV	
		High	2.0		Vcc	V	
	.OS	Low			0.8	V	
Notos: Roco	ive Sensitivity me	acurod with	a prhe31 patt	orn @25 7812	FCb/c BEB		

Notes: Receive Sensitivity measured with a prbs31 pattern @25.78125Gb/s, BER 1E-5.

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Http:// www.gigalight.com.cn

Optical Network Transceiver Innovator

Timing and Electrical

Table 4 - Timing and Electrical

Parameter	Symbol	Min.	Max.	Unit	Conditions
Tx_Disable assert time	t_off		100	μs	Rising edge of Tx_Disable to fall of output signal below 10% of nominal
Tx_Disable negate time	t_on		2	ms	Falling edge of Tx_Disable to rise of output signal above 90% of nominal. This only applies in normal operation, not during start up or fault recovery.
Time to initialize 2-wire interface	t_2w_start_up		300	ms	From power on or hot plug after the supply meet- ing <u>Table 8</u> .
Time to initialize	t_start_up		300	ms	From power supplies meeting <u>Table 8</u> or hot plug or Tx disable negated during power up, or Tx_Fault recovery, until non-cooled power level I part (or non-cooled power level II part already enabled at power level II for Tx_Fault recovery) is fully operational.
Time to initialize cooled module and time to power up a cooled module to Power Level II	t_start_up_cooled		90	5	From power supplies meeting <u>Table 8</u> or hot plug, or Tx disable negated during power up or Tx_Fault recovery, until cooled power level I part (or cooled power level II part during fault recovery) is fully operational. Also, from stop bit low-to-high SDA transition enabling Power Level II until cooled module is fully operational
Time to Power Up to Level II	t_power_level2		300	ms	From stop bit low-to-high SDA transition enabling power level II until non-cooled module is fully operational
Time to Power Down from Level II	t_power_down		300	ms	From stop bit low-to-high SDA transition dis- abling power level II until module is within power level I requirements
Tx_Fault assert	Tx_Fault_on		1	ms	From occurrence of fault to assertion of Tx_Fault
Tx_Fault assert for cooled module	Tx_Fault_on_cooled		50	ms	From occurrence of fault to assertion of Tx_Fault
Tx_Fault Reset	t_reset	10		μs	Time Tx_Disable must be held high to reset Tx_Fault
RS0, RS1 rate select timing for FC	t_RS0_FC, t_RS1_FC		500	μs	From assertion till stable output
RS0, RS1 rate select timing non FC	t_RS0, t_RS1		24	ms	From assertion till stable output
Rx_LOS assert delay	t_los_on		100	μs	From occurrence of loss of signal to assertion of Rx_LOS
Rx_LOS negate delay	t_los_off		100	μs	From occurrence of presence of signal to negation of Rx_LOS

Optical Network Transceiver Innovator

Diagnostics

Table 5 – Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3℃	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 20	mA	±10%	Internal / External
TX Power	-8 to 3	dBm	±3dB	Internal / External
RX Power	-14 to 0	dBm	±3dB	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Optical Network Transceiver Innovator

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Pin Descriptions

Optical Network Transceiver Innovator

PIN	Logic	Symbol	Name / Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL-O	TX_Fault	Module Transmitter Fault	2
3	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output	
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	2
5	LVTTL-I	SCL	2-Wire Serial Interface Clock	2
6		MOD_ABS	Module Definition, Grounded in the module	
7	LVTTL-I	RS0	Receiver Rate Select	
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication Active LOW	
9	LVTTL-I	RS1	Transmitter Rate Select (not used)	
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	1
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Receiver 3.3 V Supply	
17		VeeT	Module Transmitter Ground	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

Notes:

- 1. Module ground pins GND are isolated from the module case.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board.

Recommended Interface Circuit

Optical Network Transceiver Innovator

Mechanical Dimensions(FC/LC)

Regulatory Compliance

Gigalight GL-S250SR-XXX transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

Feature	Standard
	IEC 60825-1:2014 (3 rd Edition)
	IEC 60825-2:2004/AMD2:2010
Laser Safety	EN 60825-1-2014
	EN 60825-2:2004+A1+A2

深圳市易飞扬通信技术有限公司 SHENZHEN GIGALIGHT TECHNOLOGY CO.,LTD

Http:// www.gigalight.com.cn

Optical Network Transceiver Innovator

	EN 62368-1: 2014
Electrical Safety	IEC 62368-1:2014
	UL 62368-1:2014
Environmental protection	Directive 2011/65/EU with amendment(EU)2015/863
	EN55032: 2015
CE EMC	EN55035: 2017
	EN61000-3-2:2014
	EN61000-3-3:2013
FCC	FCC Part 15, Subpart B; ANSI C63.4-2014

References

- 1. SFP28 MSA
- 2. Ethernet IEEE802.3cc

3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.

CAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering information

Part Number	Product Description
GL-S250SR-XXX	
X: pigtail connector type, optional: LC/FC/MPO	25Gbps, 850nm, SFP28, MMF, DDM ,liquid immersion
XX: pigtail length in meters, optional: 01/02/	ininersion

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications

may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: <u>sales@gigalight.com</u> Official Site: <u>www.gigalight.com</u>

Revision History

Revision	Date	Description
V0	Oct-20, 2021	Advance Release.