

25G SFP28 ZR 80KM SOA+PIN C-Temp GSS-S8250-ZRC

Features

- ✓ Hot-pluggable SFP28 form factor
- ✓ Supports 25.78Gb/s aggregate bit rate
- ✓ Transmitter: Cooled 25Gb/s EML 1309nm TOSA
- Receiver: 25Gb/s SOA + PIN integrated ROSA
- ✓ Internal CDR circuits on both receiver and transmitter channels
- ✓ 2.5W maximum power dissipation
- ✓ Maximum link length of 80Km over SMF
- ✓ Duplex LC receptacle
- ✓ Operating case temperature range: 0 to 70°C
- ✓ Single 3.3V power supply
- ✓ RoHS compliant (2011/65/EU, lead free) *✓*

Applications

- ✓ CPRI Option 10
- ✓ 25G Ethernet

Description

This product is a 25G SFP28 transceiver designed for optical communication compliant with 25GE standard, uses a single 1309nm channel to transport a 25G Ethernet signal. Its high performance cooled EML transmitter and high sensitivity SOA receiver provide superior performance for 25GE application up to 80km (with FEC) Links.

The product is designed with SFP28 form factor, which is the optical/electrical connection according to the SFP+ Multi-Source Agreement (MSA).

Figure 1. Module Block Diagram

The SFP28 is an Enhanced Small Form Factor Pluggable SFP+ transceiver, and can be contacted through I2C system.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	-0.3	3.6	V
Input Voltage	V _{in}	-0.3	V _{cc} +0.3	V
Storage Temperature	Ts	-40	85	°C
Case Operating Temperature	Tc	0	70	°C
Humidity (non-condensing)	Rh	0	85	%

04-Sep-24 Rev. 0

www.gigalight.com

Optical Interconnection Design Innovator

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Мах	Unit
Supply Voltage	V_{cc}	3.13	3.3	3.47	V
Operating Case Temperature	Tc	0		70	°C
Data Rate Per Lane	fd		25.78		Gb/s
Humidity	Rh	0		85	%
Power Dissipation	Pm			2.5	W
Link Distance with G.652	D			80	km

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential Input Impedance	Z _{in}	90	100	110	ohm
Differential Output Impedance	Z _{out}	90	100	110	ohm
Differential Input Voltage Amplitude ¹	ΔV _{in}	300		1100	mVp-p
Differential Output Voltage Amplitude ²	ΔV _{out}	500		800	mVp-p
Skew	Sw			300	ps
Input Logic Level High	V _{IH}	2.0		V _{cc}	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	V _{OH}	V _{cc} -0.5		V _{cc}	V
Output Logic Level Low	V _{OL}	0		0.4	V

Note:

1. Differential input voltage amplitude is measured between TxnP and TxnN.

2. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Parameter	Symbol	Min	Typical	Мах	Unit
Transmitter					
Data rate	BR		25.78	-	Gbps
Optical Wavelength	λς	1308.09		1310.14	nm
Side-Mode Suppression Ratio	SMSR	30			dB

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Spectral Width (-20dB)	Δλ20	-	-	1	nm
Average Launch Power	Pout	2		7	dBm
Optical Modulation Amplitude	OMA	3.7		7.8	dBm
Extinction Ratio	ER	8			dB
Average Launch Power of OFF Transmitter	Poff			-30	dB
Rin ₂₀ OMA				-130	dB/HZ
R	eceiver				
Data rate	BR		25.78	-	Gbps
Center Wavelength	λ _c	1308.09		1310.14	nm
Average Receive Power	Pavg			-5	dBm
Receiver Sensitivity in OMA ¹	RSoma			-28	dBm
Receiver Reflectance	R _R			-26	dB
LOS Assert	LOSA	-40			dBm
LOS De-Assert	LOSD			-29	dBm
LOS Hysteresis	LOSH	0.5			dB

Note:

1. Hit Ratio =5×10⁻⁵. Unstressed receiver OMA sensitivity.

Pin Description

Pin	Logic	Symbol	Name/Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL-O	TX_Fault	Module Transmitter Fault	2
3	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output	
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	2
5	LVTTL-I	SCL	2-Wire Serial Interface Clock	2
6		MOD_ABS	Module Definition, Grounded in the module	
7	LVTTL-I	RS0	Receiver Rate Select	
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication Active LOW	
9	LVTTL-I	RS1	Transmitter Rate Select (not used)	
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	1
12	CML-O	RD-	Receiver Inverted Data Output	

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

13	CML-O	RD+	Receiver Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Receiver 3.3 V Supply	
17		VeeT	Module Transmitter Ground	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

Note:

- 1. Module ground pins GND are isolated from the module case.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board.

Figure 2. Electrical Pin-out Details

TX_FAULT Pin

Tx_Fault is a module output that when high, indicates that the module transmitter has detected a fault condition related to laser operation or safety. The Tx_Fault output is an open drain/collector and shall be pulled up to the Vcc_Host in the host with a resistor in the range 4.7 k Ω to 10 k Ω .

TX_DISABLE Pin

When Tx_Disable is asserted high or left open, the SFP+ module transmitter output shall be turned off unless the module is a passive cable assembly. This contact shall be pulled up to VccT with a 4.7 k Ω to 10 k Ω resistor in modules and cable assemblies.Tx_Disable is a module input contact.

RS0/RS1 Pin

RS0 and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module. RS0 optionally selects the optical receive signaling rate coverage. RS1 optionally selects the optical transmit signaling rate coverage.

MOD_ABS Pin

Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pullthis contact up to Vcc_Host with a resistor in the range 4.7 k Ω to10 k Ω .Mod_ABS is asserted "High" when the SFP+ module is physically absent from host slot. In the SFP MSA (INF-8074i) this contact has the same function but scalled MOD_DEF0.

RX_LOS Pin

Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. Rx_LOS is an open drain/collector output, but may also be used as an input by supervisory circuitry in the module. For a nominally 3.3 V Vcc_Host using a resistive pull up to Vcc_Host the resistor value shall be in the range 4.7 k Ω to 10 k Ω . For a nominally 2.5 V Vcc_Host using a resistive pull up to Vcc_Host the resistor value shall be in the range 4.7 k Ω to range 4.7 k Ω to 7.2 k Ω .

Recommended Interface Circuit

Figure 3. Recommended Interface Circuit

Memory Organization

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA). The memory map specific data field defines as following.

www.gigalight.com

Optical Interconnection Design Innovator

Figure 4.SFP28 Memory Map

Mechanical Dimensions

Optical Interconnection Design Innovator

Figure 5. Mechanical Specifications

Regulatory Compliance

GigalightGSS-SPO280-ERT transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

Feature	Standard
Laser Safety	IEC 60825-1:2014 (3 rd Edition) IEC 60825-2:2004/AMD2:2010 EN 60825-1-2014 EN 60825-2:2004+A1+A2
Electrical Safety	EN 62368-1: 2014 IEC 62368-1:2014 UL 62368-1:2014
Environmental protection	Directive 2011/65/EU with amendment(EU)2015/863
CE EMC	EN55032: 2015 EN55035: 2017 EN61000-3-2:2014 EN61000-3-3:2013
FCC	FCC Part 15, Subpart B; ANSI C63.4-2014

References

1.SFP28 MSA

2.Ethernet IEEE802.3cc

www.gigalight.com

3.Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.

ACAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering Information

Part Number	Product Description
GSS-S8250-ZRC	1309nm, SFP28, 25G Ethernet ZR, SOA+PIN, 80km,0 $^\circ\!\!\mathbb{C}$ ~ +70 $^\circ\!\!\mathbb{C}$

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Gigalight before they become applicable to any particular order or contract. In accordance with the Gigalight policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of Gigalight or others. Further details are available from any Gigalight sales representative.

E-mail: <u>sales@gigalight.com</u> Official Site: <u>www.gigalight.com</u>

Revision History

Revision	Date	Description
V0	Sep-04-2024	Advance Release.