

50GHz Full C-band Tunable 10GBASE-ZR/OC-192 10Gb/s SFP+ 80km P/N : GPU-CXXX-08CD

Features

- Hot-pluggable SFP+ footprint
- 50GHz DWDM ITU-T Full C-band Tunability
- Support 9.95Gb/s to 11.3Gb/s bit rates
- 80km 50GHz DWDM laser
- 80km APD photodiode receiver
- Single 3.3V power supply
- Power dissipation <1.7W
- -5° C to $+70^{\circ}$ C
- Duplex LC fiber connectors
- 10GBASE-ZR/ZW
- SDH STM-64ITU-T G.959.1 P1L1-2D2
- Full Digital Optical Monitoring
- Metal enclosure for lower EMI
- Complies with RoHS directive (2002/95/EC)
- Compliant with SFP+ Electrical MSA SFF-8431
- Compliant with SFP+ Mechanical MSA SFF-8432
- Laser Class 1 IEC/CDRH compliant

Applications

- Full C-band Tunable10GBASE-ZR 10GEthernet
- 8GB/10GB Fibre Channel
- SONET OC-192 LR-2
- SDH STM-64ITU-T G.959.1 P1L1-2D2
- Access DWDM Ethernet Switch or IP Router Interconnect

Descriptions

Gigalight 50GHz Full C-band Tunable SFP+ transceivers are designed for use in 9.95Gb/s to 11.3Gb/s 50GHz DWDM links up to 80km of G.652 fiber. The SFP+ module supports 10GBASE-ZR and –ZW applications along with SONET OC-192 LR-2 and SDH STM-64 ITU-T G.959.1 P1L1-2D2 applications for Ethernet Switches, IP Routers or SONET/SDH optical interfaces. Digital Optical Monitoring interfaces are provided via the SFP+ standards compliant I2C interface.

Figure 1. Tunable SFP+ optical transceiver functional block diagram

Transmitter

The transmitter path converts serial NRZ electrical data from 9.95 to

11.3 Gbps line rates to a standard compliant optical signal.

Inside the module, the differential signal is coupled into the modulator driver which transforms the small swing voltage to an output modulation that drives a cooled InP Integrated Laser Mach-Zehnder (ILMZ) modulator. The optical signal is engineered to meet the 10 Gigabit Ethernet, 10 G FC, and corresponding FEC-rates and DWDM specifica- tions at ITU grids with 50 GHz channel spacing. Closed-loop control of the transmitted laser power and modulation swing over temperature and voltage variations are provided. The laser is coupled to a single-mode optical fiber through an industry-standard LC optical connector. **Receiver**

The receiver converts incoming DC-balanced serial NRZ 9.95 to 11.3 Gbps line rate optical data into serial SFI electrical data. Light is coupled to an APD from single-mode optical fiber through an

industry-standard LC optical connector. The electrical current from the APD is converted to voltage in a limiting trans impedance amplifier.

The amplified signal is output directly on the RD+ and RD- pins as a 100 Ω CML signal.

Low-Speed Signaling

Low-speed signaling is based on low-voltage TTL (LVTTL) operating at a nominal voltage of 3.3 V. Hosts should use a pull-up resistor connected to VCC

3.3V on the 2-wire interface SCL, SDA, and all low-speed outputs.

Application Schematics

Tunable SFP+ modules are hot pluggable and active connections are powered by individual power connections for the transmitter ($V_{CC}T$) and the receiver ($V_{CC}R$). Multiple modules can share a single 3.3 V power supply with individual filtering for each $V_{CC}T$ and $V_{CC}R$. The host shall generate an effective weighted integrated spectrum RMS noise of less than 25 mV in the 10 Hz to 10 MHz frequency range. Detailed power supply specifications are given in SFF-8431 Rev. 4.1 Section 2.8. Figure 2 shows a typical application schematic.

Figure 2. Typical application schematic

Pin Function Definitions

Figure 4. Tunable SFP+ optical transceiver functional schematic

Optical Interconnection Design Innovator

Table 1. SFP+ optical transceiver pin descriptions

Pin No.	Туре	Name	Description
1		VEET1	Module transmitter ground
2	LVTTL- O	Tx_Fault	Module transmitter fault; when asserted high, it indicates that the module has detected a transmitter fault condition related to laser operation or safety.
3	LVTTL-I	Tx_Disable	Transmitter disable; when asserted high or left open, transmitter laser source turned off; when Tx_Disable is asserted low or grounded, the module transmitter is operating normally.
4	LVTTL- I/O	SDA ²	2-wire interface data line
5	LVTTL-I	SCL ²	2-wire interface clock
6		Mod_ABS ²	Indicates module is not present. Grounded to $V_{EE}T$ or $V_{EE}R$ in the module. Asserted high when SFP+ module is absent and pulled low when the SFP+ module is inserted.
7	LVTTL-I	RS0 ³	Rate select 0 (not used)
8	LVTTL- O	Rx_LOS ²	Receiver loss of signal indicator. Asserted high when receiving insufficient optical power for reliable signal reception.
9	LVTTL-I	RS1 ³	Rate select 1 (not used)
10		V _{EE} R ¹	Module receiver ground
11		V _{EE} R ¹	Module receiver ground
12	CML-O	RD-	Receiver inverted data output
13	CML-O	RD+	Receiver non-inverted data output
14		VEER1	Module receiver ground
15		VCCR	Module receiver +3.3 V supply
16		VCCT	Module transmitter +3.3 V supply
17		V _{EE} T ¹	Module transmitter ground
18	CML-I	TD+	Transmitter non-inverted data input
19	CML-I	TD-	Transmitter inverted data input
20		VEET1	Module transmitter ground

1.Module ground pins (GND) are isolated from the module case and chassis ground within the module

2.Shall be pulled up with 4.7 to 10 k Ω to a voltage between 3.135 and 3.465 V on the host board 3.Pulled high to V_{CC}T with >100 k Ω in the module

SFP+ SFI Reference Model Compliance Points

Absolute Maximum Ratings

Absolute maximum ratings represent the device's damage thresholds. Permanent damage may occur if the device is stressed beyond the limits stated here.

Parameter	Symbol	Ratings	Unit
Storage temperature	T _{ST}	-40 to +85	°C
Relative humidity	RH	5 to 85 (nonconden sing)	%
Static electrical discharge (human body model)	ESD	200	V
Power supply voltages	V _{CC} T, V _{CC} R	-0.3 to 4.0	V
Receive input optical power (damage threshold)	P _{dth}	+4	dBm

Operating Conditions

Operating conditions establish the range over which the electrical and optical specifications are defined, unless otherwise noted. Performance is not guaranteed for operation at any condition outside the operating limits indicated in this section, except as otherwise noted.

Parameter	Symbol	Min	Max	Unit
Operating case temperature	Тор	-5	+70	°C
Power supply voltages	V _{CC} T,	3.13	3.465	V
	VCCR	5		
Receiver wavelength range	λ	1528	1568.77	nm
		.38		

Low-Speed Electrical and Power Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Currentsand Voltages						
Voltage	V _{CC} T , V _{CC} R	3.13 5	3.3	3.465	V	With respect to GND
Instantaneous operating peak current	, CCK			600	mA	Per supply pin V _{CC} T and V _{CC} R Compliant with SFF-8431

Optical Interconnection Design Innovator

Sustained operating peak current			500	mA	Per supply pin V _{CC} T and V _{CC} R Compliant with SFF-8431
Power dissipation	Pwr		1.65	W	

Low-Speed Controland Sense Signals(detailedspecificationin SFP+ MSASFF-8431 Rev. 4.1)

		enspect.	 		
Outputs (Tx_Fault, Rx_LOS)	VOL	-0.3	0.4	V	At 0.7 mA
	IOH	-50	37.5	μ	Measured with a $4.7 \mathrm{k}\Omega$ load
				Α	pulled up to V _{CC} host ¹
Inputs (Tx_Disable, RS0, RS1)	VIL	-0.3	0.8	V	Pulled up in module to
					VCCT
	V _{IH}	2	VCC	V	
			3+0.3		
SCL and SDA inputs	VIL	-0.3	VCC	V	
			3*0.3		
	V _{IH}	VCC	VCC	V	Pulled up on host
		3*0.7	3+0.5		toV _{cc_host} ¹ (typical $4.7-10$
					kΩ)

1. Vcc_host (min) 3.135 V - (max) 3.465 V

High-Speed Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter Electrical Input Jitte	r from Host	at B"(d	etailed s			
Data-dependent jitter ¹	DDJ			0.10	UI(p	
					-p)	
Uncorrelated jitter ²	UJ			0.023	UI(r	
					ms)	
Data-dependent pulse width	DDP			0.055	UI(p	
shrinkage jitter ¹	WS				-p)	
Total jitter ³	TJ			0.28	UI(p	
					-p)	
Eye mask	X1			0.12	UI	
	X2			0.33	UI	Mask hit ratio of 5×10^{-5}
	Y1	95			mV	
	Y2			350	mV	
Input impedance, differential			100		Ω	

Limiting Module Receiver Electrical Output Jitter to Hostat C' (detailed specificationin SFP+ MSASFF 8431 Rev. 4.1)

Output rise and fall time (20% to 80%)	T _r , T _f	28		ps	
Total jitter ³	TJ		0.70	UI	
99% jitter ³	J2		0.42	UI	
Eye mask	X1		0.35	UI	Rx input
	Y1	70		mV	power at -23
	Y2		425	mV	dBm Mask hit
					ratio of
					1x10 ⁻¹²

Optical Transmitter Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Average optical power ⁴	Pavg	-1		3	dBm	
Extinction ratio ⁵	ER	9.0			dB	
Wavelength range ⁴	$\lambda_{\mathbf{c}}$	1528.		1568.	nm	ITU Grid wavelength in Sec.
		38		77		3.14
Frequency range	$f_{\mathbf{c}}$	191.1		196.1	THz	ITU Grid frequency in Sec.
				5		3.14
Frequency center spacing			50		GHz	
Frequency stability (BOL)		f _c -1		fc	GHz	

Optical Interconnection Design Innovator

			.5	+1.5		
Frequency stab	Frequency stability (EOL)		$f_{c}-2$	<i>f</i> c +2.5	GHz	
Channel tunin	g time			50	ms	Any channel to any channel
Side mode sup	pression ratio	SMSR	35		dB	
Jitter	4 MHz to 80			0.1	UI	
generation	MHz				(p-p)	
	20 kHz to			0.3	UI(p	
	80 MHz				-p)	
Spectral width	L			200	pm	At -20 dB, 0.01 nm RBW
Relative intensity noise		RIN		-130	dB/	
	, i i i i i i i i i i i i i i i i i i i				Hz	
Return loss ⁶			24		dB	

1.PRBS9 pattern, 10.3 Gbps

2.PRBS31 or valid 64B/66B, 10.3 Gbps

3.PRBS31 pattern, BER<1x10⁻¹², 10.3 Gbps

4.Optical power and wavelength range are only guaranteed when the electrical input applied to TD+ and TD- is greater than the minimum specified in section 3.6

5.Tested with a PRBS 2³¹–1 pattern

6.Minimum optical return loss at the source reference point, MPI-S (per ITU-T G.959.1)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Receiver overload ¹	P _{max}	-7			dBm
Receiver reflectance ²	R _{rx}			-27	dB
LOS assert ³	Plos_o	-33.			dBm
	n	5			
LOS deassert	P _{los_of}			-26	dBm
	f				
LOS hysteresis		0.5		4	dB
		Rx Sens		RxSensitivity ⁴	
		0 ps	/nm	-400 to +1600	
Data Rate (Gbps)	BER			ps/nm	Unit
		M	ax	Max	
9.95, 10.3, 10.5	1×10^{-1}	-2	23	-21	dBm
	2				
10.709	1x10 ⁻⁴	-27		-25	dBm
11.1	1x10 ⁻⁴	-2	27	-25	dBm
11.3	1x10 ⁻⁴	-20	5.5	-24	dBm

Optical Receiver Characteristics

		Dispersion	Rx Pov (dB	wer Range Sm)	
Data Rate (Gbps)	BER	(ps/nm)	Min	Max	OSNR (dB)
9.95, 10.3, 10.5	1x10 ⁻¹²	0	-18	_7	2 4
9.95, 10.3, 10.5	1x10 ⁻¹²	-400 to +1450	-18	_7	2 6
10.709	1x10 ⁻⁴	0	-18	-7	1 6
10.709	1x10 ⁻⁴	-400 to +1600	-18	-7	1 9
11.1	1x10 ⁻⁴	0	-18	-7	1 7
11.1	1x10 ⁻⁴	-400 to +1600	-18	-7	2 0

OSNR Characteristics with External CDR Implemented on the Host Board⁵

1.Guaranteed up to 10.709 Gbps; BER <10-12; PRBS 231-1

2.Maximum discrete reflectance between source reference point, MPI-S, and receive reference point, MPI-R (per ITU-T G.959.1)

3.Receiver LOS Assert Level (per average power) is programmable upon request

4.Measured with worst ER; PRBS 2^{31-1} ; over specified wavelength range; OSNR >30 dB; with external clock and data recovery (CDR) board

- 5. Specifications apply under these conditions:
 - Fixed RxDTV, OSNR at 0.1 nm NBW, 0.55 nm filter BW, PRBS 2³¹–1 pattern, over wavelength range specified in section 3.4
 - External CDR board required for all measurements
 - No threshold adjustment available for optimization

Tunable SFP+ Channel Number and Wavelength

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Channel	Frequency (THz)	Center Wavelength (nm)
1	191.10	1568.77
2	191.15	1568.36
3	191.20	1567.95
4	191.25	1567.54
5	191.30	1567.13
6	191.35	1566.72
7	191.40	1566.31
8	191.45	1565.90
9	191.50	1565.50
10	191.55	1565.09
11	191.60	1564.68
12	191.65	1564.27
13	191.70	1563.86
14	191.75	1563.45
15	191.80	1563.05
16	191.85	1562.64
10	191.85	1562.23
17	191.95	1561.83
18	191.95	1561.42
		1561.01
20	192.05	
21	192.10	1560.61
22	192.15	1560.20
23	192.20	1559.79
24	192.25	1559.39
25	192.30	1558.98
26	192.35	1558.58
27	192.40	1558.17
28	192.45	1557.77
29	192.50	1557.36
30	192.55	1556.96
31	192.60	1556.55
32	192.65	1556.15
33	192.70	1555.75
34	192.75	1555.34
35	192.80	1554.94
36	192.85	1554.54
37	192.90	1554.13
38	192.95	1553.73
39	193.00	1553.33
40	193.05	1552.93
41	193.10	1552.52
42	193.15	1552.12
43	193.20	1551.72
44	193.25	1551.32
45	193.30	1550.92
46	193.35	1550.52
47	193.40	1550.12
48	193.45	1549.72
49	193.50	1549.32
50	193.55	1548.91
51	193.60	1548.51
	100.00	10.0.01

Channel	Frequency (THz)	Center Wavelength (nm)
52	193.65	1548.11
53	193.70	1547.72
54	193.75	1547.32
55	193.80	1546.92
56	193.85	1546.52
57	193.90	1546.12
58	193.95	1545.72
59	194.00	1545.32
60	194.05	1544.92
61	194.10	1544.53
62	194.15	1544.13
63	194.20	1543.73
64	194.25	1543.33
65	194.30	1542.94
66	194.35	1542.54
67	194.40	1542.14
68	194.45	1541.75
69	194.50	1541.35
70	194.55	1540.95
71	194.60	1540.56
72	194.65	1540.16
73	194.70	1539.77
74	194.75	1539.37
75	194.80	1538.98
76	194.85	1538.58
77	194.90	1538.19
78	194.95	1537.79
79	195.00	1537.40
80	195.05	1537.00
81	195.10	1536.61
82	195.15	1536.22
83	195.20	1535.82
84	195.25	1535.43
85	195.30	1535.04
86	195.35	1535.04
	195.40	1534.25
<u> </u>	195.40	1534.25
89	195.50	1533.47
90	195.55	1533.07
91	195.60	1532.68
92	195.65	1532.29
93	195.70	1531.90
94	195.75	1531.51
95	195.80	1531.12
96	195.85	1530.72
97	195.90	1530.33
98	195.95	1529.94
99	196.00	1529.55
100	196.05	1529.16
101	196.10	1528.77
102	196.15	1528.38

SFP+2-Wire Interface Protocol and Management Interface

The transceiver incorporates a 2-wire management interface which is used for serial ID, digital diagnostics, and certain control functions. It is modeled on the SFF-8472 Rev 11.3 specification modified to accommodate a single 2-wire interface address. Details of the protocol and interface are explicitly described in the MSA. Please refer to the MSA for design reference.

Digital Diagnostic Monitoring Accuracy

Parameter	Symbo	Ma	Unit	Notes
	l	Х.		
Transceiver internal	ΔDD	± 3	°C	
temperature	M_T _i			
	nt			
Transceiver internal supply	ΔDD	±3	%	
voltage	M_Vi			
	nt			
Transmitter bias current	ΔDD	±1	%	
	M_I _{bi}	0		
	as			
TX output optical power	ΔDDM	± 3	dB	
	_PTx			
RX input optical power	ΔDDM	± 3	dB	Between Rx overload and
	_P _{Rx}			sensitivity levels

Timing Requirement of Control and Status I/O

Parameter	Symbol	Mi	Ma	Unit	Notes
		n.	х.		
Tx_Disable assert time	t_off		10 0	μs	Rising edge of Tx_Disable to fall of output signal below 10% of nominal
Tx_Disable negate time	t_on		50	ms	Falling edge of Tx_Disable to rise of output signal above 90% of nominal ¹
Time to initialize 2-wire interface	t_2w_start _up		30 0	ms	From power on or hot plug
ime to initialize t_start_up_c ooled			90	S	From power on or hot plug
Tx_Fault assert	Tx_Fault_on _cooled		50	ms	From occurrence of fault to assertion of Tx_Fault
Tx_Fault reset	Tx_Fault_r	10		μs	Time Tx_Disable must

Optical Interconnection Design Innovator

	eset			be held high to reset
				Tx_Fault
Rx LOS assert delay	t loss on	10	μs	From occurrence of loss of
_ •		0	•	signal to assertion of
				Rx_LOS
RX_LOS negate delay	t_loss_off	10	μs	From occurrence of return
		0		of signal to negation of
				RX_LOS

1. The transceiver is thermally stabilized prior to Tx_Disable negating event.

3.14 Timing Diagram for Power-On/Hot-Plug and Tx Disable Event (Not to Scale)

Condition 1: Tx DIS Negate	before power on/ hot plug
Powered on /Hot plug (VccT>3.14V)	t 2w start up(<300ms, typ 100ms)
Tx_DIS (Pin 3)	(w_stan_pp(<sound, rooms)<="" td="" we=""></sound,>
Tx_Fault (Pin 2)	
Transmitted Signal	·
	TEC will not be ready for Tx to emitted laser, T_start_up_cooled (<90s)
Condition 2: Tx DIS Negated	tter power on/ hot plug
Powered on /Hot plug (VccT>3.14V)	L_2w_start_up (<300ms,typ_100ms)
Tx_DIS (Pin 3)	
Tx_Fault (Pin 2)	
Transmitted Signal	
24 - 12 is	TEC will not be ready for Tx to emitted laser, T_start_up_cooled (<90s)
Channel Restore (A2h, page 2, byte 144-145/146-147)	Hostcan startsending channel switching commands
I2C bus Ready	Laserstart to to switch to channel stored A2h, page 2, byte 144- 145/748-147 (with valid channel (#0)) and ramp up optical power
Channel Switching Event (with valid channel no (#0))	Note: if the channel setto be 0, there will be no switching event

Regulatory Compliance

The transceiver complies with international safety and electromagnetic compatibility (EMC) requirements and standards. EMC performance depends on the overall system design. The transceiver is also lead-free and RoHS 6/6 compliant.

Table 2.	Regulatory	Compliance
----------	------------	------------

Feature	Test Method	Performance	
Safety			
Product	UL 60950-1		
	CSA C22.2 No. 60950-1	UL recognized component for US and CAN	
	EN 60950-1	TUV certificate	
	IEC 60950-1	CB certificate	
	Flame Class V-0	Passes needle point flame test for component flammability verification	
	Low Voltage Directive 2006/95/EC	Certified to harmonized standards listed; Declaration of Conformity issued	
Laser	EN 60825-1, EN 60825-2	TUV certificate	
	IEC 60825-1	CB certificate	
	U.S. 21 CFR 1040.10	FDA/CDRH certified with accession number	
Electromag	netic Compatibility		
Radiat	EMC Directive 2004/108/EC	Class B digital device with a minimum –6 dB margin to	
edemi	FCC rules 47 CFR Part 15	the limit. Final margin may vary depending on system implementation.	
ssions	CISPR 22		
	AS/NZS CISPR22	Tested frequency range: 30 MHz to 40 GHz or 5th	
	EN 55022	harmonic (5 times the highest frequency), whichever is	
	ICES-003, Issue 5	less.	
	VCCIV-3	Requires good system EMI design practice to achieve Class B margins at the system level.	
Immunity	EMC Directive		
	2004/108/EC	Certified to harmonized standards listed; Declaration of	
	CISPR 24	Conformity issued.	
	EN 55024		
ESD	IEC/EN 61000-4-2	Exceeds requirements. Withstands discharges of $\pm 8 \text{ k V}$ contact, $\pm 15 \text{ k V}$ air.	
Radiat ed	IEC/EN 61000-4-3	Exceeds requirements. Field strength of 10 V/m from 10 MHz to 6 GHz.	
immu		No detectable effect on transmitter/receiver	
nity		performance between these limits.	

Restriction of Hazardous Substances (RoHS)

	j	
RoHS	EU Directive 2011/65/EU	Compliant per the European Parliament Directive 2011/65/EU of the 8 June 2011 on the restricted use of certain hazardous substances in electrical and electronic equipment (recast). A RoHS Certificate of Conformance (C of C) is available upon request. The product may use certain RoHS exemptions.

T-SFP+ Transceiver Mechanical Diagram

Ordering Information

Part Number	Product Description
GPU-CXXX-08CD	XXX=ITU channel(Gigalight ID), C-band Tunable DWDM SFP+,80km, 0°C~70°C

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: <u>sales@gigalight.com.cn</u> Web: <u>http://www.gigalight.com.cn</u>