

Optical Interconnection Design Innovator

40G QSFP+ LR4 Lite 2km Optical Transceiver GQS-SPO400-IR4C

Features

- QSFP+ MSA compliant
- Compliant to IEEE 802.3ba specification for 40GBASE-IR4 links
- 4CH CWDM uncooled FP lasers, using ITU G.694.2 wavelength grid at 1271, 1291, 1311, and 1331nm
- High-sensitivity PIN-TIA with optical DEMUX
- Up to 2km reach over standard single mode fiber
- Compliant with QDR/DDR InfiniBand data rates
- Hot-pluggable electrical interface
- Power consumption < 3.5W
- Operating case temperature 0°C to +70°C
- 3.3V power supply
- RoHS-6 compliant (lead free)

Applications

- ♦ 40G Ethernet
- InfiniBand QDR and DDR interconnects
- Client-side 40G Telecom connections

Description

The GQS-SPO400-IR4C is a 4x10G hot-pluggable optical transceiver. It enables the integration of 4 transmitters, 4 receivers and an optical MUX/DEMUX into a small form-factor package that delivers a 40Gbps data link in a compact QSFP footprint. The optical connectivity is based on two SMF LC connectors, one for Tx and one for Rx. The Tx and Rx each consist of four 10Gb/s CWDM channels, operating at wavelengths in the 1300nm range. The 40G QSFP+ LR4 Lite transceiver is designed for applications based on the IEEE 802.3ba 40GBASE-LR4 standard of up to 2km reach.

Functional Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc-Tx Vcc-Rx Vcc1	0	3.6	V
Storage Temperature Range	T _{STG}	-40	+85	°C
Maximum Average Input OpticalPower per lane (Damage Threshold)	P _{IN}	3.3		dBm

www.gigalight.com

Optical Interconnection Design Innovator RH 10% to 90% (non-condensing) **Relative Humidity**

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc-Tx Vcc-Rx Vcc1	3.13	3.47	V
Operating Case temperature	T _{CASE}	0	70	°C
Power Consumption	P _{DISS}		3.5	W
SMF Link Length	Lкм		2	km

High Speed Electrical Specifications

Parameter	Min	Typical	Мах	Units
	Ge	eneral		
Supply Voltage	3.13	3.3	3.47	Volts
Supply Current			1.12	Amps
Maximum Power Consumption			3.5	Watts
Maximum Power Consumption – LP Mode			1.5	Watts
Signaling Speed Per Channel		10.3125		Gb/s
Signaling Speed Operating Range		±100		ppm
	Tran	ismitter		
Transmitter Differential Input Impedance	90	100	110	ohms
Transmitter Differential Input Voltage	0.2		1.6	Volts
	Re	ceiver		
Differential Output impedance	90	100	110	ohms
Differential output voltage		180	700	mV
Rise Time	28		60	ps
Fall Time	28		60	ps

Optical Interconnection Design Innovator

Optical Characteristics

Transmitter Specifications – Optical

Parameter	Min	Typical	Мах	Unit	
Lane Wavelength Range	1264.5 1284.5 1304.5 1324.5	1271 1291 1311 1331	1277.5 1297.5 1317.5 1337.5	nm	
Data Rate Per Lane		10.3125		Gb/s	
Average Optical power per lane	-10		2.3	dBm	
Total Average Launch power			8.3	dBm	
Optical Modulation Amplitude (OMA), each lane	-6.0		3.5	dBm	
Extinction Ratio	3.5			dB	
Difference in launch power between any two lanes			6.5	dB	
Relative Intensity Noise (RIN)			-128	dB/Hz	
Launch Power in OMA minus TDP, each lane	-7.8			dBm	
Transmitter and dispersion penalty (TDP), each lane			2.3	dB	
Spectral Width (RMS)	-	-	3.5	nm	
Average Launch Power per lane @ TX off state			-30	dBm	
Transmitter Reflectance			-12	dB	
Optical return loss tolerance			20	dB	
Transmitter Eye Mask definition: X1, X2, X3, Y1, Y2, Y3	Compliant with 802.3ba standard {0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				
Eye Mask Criteria			becified ranges of ter supply noise at end		

Optical Interconnection Design Innovator

Normalized time (Unit Interval) Optical eye mask requirement

Transmitter Optical Eye Diagram

A typical optical eye diagram at 10.3125 Gb/s with mask margin of 35%

Optical Interconnection Design Innovator

Receiver Specifications – Optical

Parar	Min	Typical	Мах	Unit	
Lane Wavele	1264.5 1284.5 1304.5 1324.5	1271 1291 1311 1331	1277.5 1297.5 1317.5 1337.5	nm	
Damage ⁻	Threshold			3.4	dBm
Average Receive	-13.7		2.3	dBm	
Receive Power, e			3.5	dBm	
Difference in Receive Power between any two lanes (OMA)				7.5	dB
Receiver R	Reflectance			-26	dB
	Receiver Sensitivity (OMA) per lane (10.3125Gb/s @ PRBS 2 ³¹ -1 and BER=10 ⁻¹²)			-10.5	dBm
Receiver 3 dB electrical upper cutoff frequency, each lane				12.3	GHz
Stressed Receiver Sensitivity OMA), each lane				-8.5	dBm
Conditions of stressed	Vertical eye closure penalty, each lane	1.9			dB
receiver sensitivity tests	Stressed eye jitter per lane	0.3			UI

Receiver Output Power Thresholds for Loss of Signal (LOS)

Parameters	Min	Typical	Мах	Unit
RX_LOS_Assert Min/Max (dBm)	-30			dBm
RX_LOS_De-Assert Max(dBm)			-14	dBm
RX_LOS_Hysteresis (dBm)	0.5			dB

Optical Interconnection Design Innovator

Receiver Electrical Signal Output Diagram

Electrical eye diagram at 10.3125 Gb/s

Recommended Host Board Power Supply Filtering

Figure 2.QSFP voltage supply and filtering scheme

QSFP Edge Connector and Pinout Description

The electrical interface to the transceiver is a 38-pin edge connector. The 38-pins provide high speed data, low speed monitoring and control signals, I²C communication, power and ground connectivity. The top and bottom views of the connector are provided below, as well as a table outlining the contact numbering, symbol and full description.

Optical Interconnection Design Innovator

Top Side Viewed from Top

Bottom Side Viewed from Bottom

QSFP Transceiver Pinout

Pi n	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	TransmittedInvertedData Input	3
3	CML-I	Tx2p	TransmittedNon-inverted Data Input	3
4		GND	Ground	1
5	CML-I	Tx4n	TransmittedInvertedData Input	3
6	CML-I	Tx4p	TransmittedNon-inverted Data Input	3
7		GND	Ground	1
8	LVTTL-I	ModSeiL	Module Select	3
9	LVTTL-I	ResetL	Module Reset	3
10		VccRx	+3.3 VDC Receiver Power Supply	2
11	LVCMOS-I/O	SCL	Serial Clock for I ² C Interface	3
12	LVCMOS-I/O	SDA	Serial Data for I ² C Interface	3
13		GND	Ground	1
14	CML-O	RX3p	Receiver Non-inverted Data Output	3
15	CML-O	RX3n	Receiver Inverted Data Output	3
16		GND	Ground	1
17	CML-O	RX1p	Receiver Non-inverted Data Output	3
18	CML-O	RX1n	Receiver Inverted Data Output	3
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	RX2n	Receiver Inverted Data Output	3

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

Optical Interconnection Design Innovator

22	CML-O	RX2p	Receiver Non-inverted Data Output	3
23		GND	Ground	1
24	CML-O	RX4n	Receiver Inverted Data Output	3
25	CML-O	RX4p	Receiver Non-inverted Data Output	3
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	3
28	LVTTL-O	IntL	Interrupt	3
29		VccTx	+3.3 VDC Transmitter Power Supply	2
30		Vcc1	+3.3 VDC Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	3
32		GND	Ground	1
33	CML-I	ТХ3р	TransmittedNon-inverted Data Input	3
34	CML-I	TX3n	Transmitted Inverted Data Input	3
35		GND	Ground	1
36	CML-I	TX1p	TransmittedNon-inverted Data Input	3
37	CML-I	TX1n	TransmittedInvertedData Input	3
38		GND	Ground	1

Electrical Specifications - Low speed control signals

Host-QSFP Hardware pins description

There are 7 wires connected between the Host and the QSFP module. The signal levels and polarity are defined in the SFF-8436 standard.

TWS – (Two-wire serial interface) uses 2 signals namely: SCL (clock) and SDA (Data). TheQSFP module Address is 50h='101000x'.

x='0' means write operation into QSFP, x='1' means read operation from QSFP.

The module responds to a TWS request only if the module is selected by the ModSelLpin.There are several read and write operation modes according to the standard and all of themare supported by QSFP module.

ModSelL– Module select pin. When low, the module responds to TWS communication.

ResetL– Reset pin. If ResetL ='0', the module initiates a complete reset routine which returns the module to default state settings. The routine starts only after ResetL is released(ResetL='1').

LPMode– Low Power Mode pin. When LPMode='1', the module power is reduced to below1.5W. In this state, TWS communication is operational, but the transmitter functionality isdisabled. In addition, the LPMode can be controlled by software control bits. The softwarecontrol bits are Power_over-ride and Power_set located in page LOWER MEMORY, Addressbyte 93 bits 0, 1 as shown in table below.

LPMode	Power_Overide Bit	Power_set Bit	Module Power Allowed
1	0	X	Low Power (< 1.5W)
0	0	X	High Power (< 3.5W)
X	1	1	Low Power (< 1.5W)
X	1	0	High Power (< 3.5W)

IntL– This is an output pin. When "LOW", the module indicates a possible module operational fault of a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The

IntL pin is an open collector output and must be pulled to hostsupply voltage on the host board.

ModPrsL– This pin is pulled up to VCC at the host board and connected to ground in themodule. The ModPrsL is asserted "LOW" when inserted and de-asserted "HIGH" when themodule is physically absent from the host connector.

Hostto QSFP Management Interface

The communication with the transceiver shall be over a two wire serial interface using standardtwo-wire-serial interface (TWS) bus. The TWS bus enables flexible use of the transceiver bythe user including the ability to digitally monitor the module. The parameters that can be measured are power supply voltage, internal temperature, Loss of Signal (LOS) status for all 4channels, transmitter fault status and biasing conditions for all 4 channels, as well as providingfull operating control of individual 4 channels. The TWS enables interfacing and writing orreading to the module EEPROM memory.

Timing Requirements

The timing requirements for the TWS interface are defined in the QSFP SFF-8436 standard. The QSFP timing diagram is shown in figure 3 below.

Figure 3: Two-wire Serial Interface Timing Diagram The timing parameters for the TWS interface to the QSFP module are shown below:

Parameter	Symbol	Min	Max	Unit	Conditions
Clock Frequency	f _{SCL}	0	400	kHz	
Clock Pulse Width Low	TLOW	1.3		us	
Clock Pulse Width High	t _{HIGH}	0.6		us	
Time bus free before new transmission can start	t _{BUF}	20		us	Between STOP and START
START Hold Time	t _{hd,sta}	0.6		us	
START Set-up Time	T _{SU,STA}	0.6		us	
Data In Hold Time	t _{hd,dta}	0		us	
Data In Set-up Time	T _{SU,DTA}	0.1		us	
Input Rise Time (400kHz)	t _{R,400}		300	ns	From (VIL,MAX-0.15) to (VIH,MIN+0.15)
Input Fall Time (400kHz)	T _{F,400}		300		From (VIH,MIN+0.15) to (VIL,MAX-0.15)
STOP Set-up Time	Tsu,sto	0.6		us	
ModSelL Setup Time	Host_sel ect_setu p	2		ms	Setup time on the select lines before start of a host initiated serial bus sequence

www.gigalight.com			Optical Interconnection Design Innovator	
ModSelL Hold Time	Host_sel ect_hold	10	us	Delay from completion of a serial bus sequence to changes of transceiver select status
Aborted sequence-bus release	Deselect _Abort	2	ms	Delay from a host de-asserting ModSelL (at any point in a bus sequence), to the QSFP module releasing SCL and SDA

Memory Interaction Specifications

QSFP Memory transaction timings and the Single and Multiple byte memory blocks are defined in the tables below.

Parameter	Symbol	Min	Мах	Unit	
Serial Interface Clock Holdoff "Clock Stretching"	T_clock_hold		500	us	Maximum time the QSFP module may hold the SCL line low before continuing with a read or write operation
Complete Single orSequential Write	t wr		40	ms	Complete (up to) 4 Byte Write

When the host performs a write command, the SW first reads the bytes from the I²C bus. Then,after the SW reaches the stop condition, the SW can write all the bytes. Following a writecommand, add at least a 16ms delay.

The timing for QSFP Soft Control and Status Functions are described as follows:

Parameter	Symbol	Max	Unit	Conditions
Initialization Time	t_init	2000	ms	Time from power on ² , hot plug or rising edge of Reset until the module is fully functional ³ This time does not apply to non-Power Level 0 modules in the Low Power State
Reset Init Assert Time	t_reset_init	2	μs	A Reset is generated by a low level longer than the minimum reset pulse time present on the ResetL pin.
Serial Bus Hardware Ready Time	t_serial	2000	ms	Time from power on ² until module responds to data transmission over the 2-wire serial bus
Monitor Data Ready Time	t_data	2000	ms	Time from power on ² to data not ready, bit 0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until the module is fully functional ³
LPMode Assert Time	ton_LPMode	100	μs	Time from assertion of LPMode (Vin:LPMode = Vih) until module power consumption enters lower Power Level 1
LPModeDeassert Time	Toff_LPMode	300	ms	Time for deassertion of LPMode (Vin:LPMode=Vil) until module is fully functional3,5
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until Vout:IntL = Vol
IntLDeassert Time	toff_IntL	500	μs	Time from clear on read ⁴ operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set (value=1b) and IntL asserted
Tx Fault Assert Time	ton_Txfault	200	ms	Time from Tx Fault state to Tx Fault bit set (value=1b) and IntL asserted
Flag Assert Time	ton_flag	200	ms	Time from occurrence of condition triggering flag to associated flag bit set (value=1b) and IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set(value=1b) ¹ until associated IntL assertion is inhibited

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

Optical Interconnection Design Innovator

Mask Deassert Time	toff_mask	100	ms	Time from mask bit cleared (value=0b) ¹ until associated IntlL operation resumes
Application or Rate Select Change Time	t_ratesel	100	μs	Time from change of state of Application or Rate Select Bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set (value=1b) ¹ until module power consumption enters lower Power Level 1
Power_over-ride or Power-set Deassert Time	toff_Pdown	300	ms	Time from P_Down bit cleared(value=0b) ¹ until the module is fully functional ³

Note:

1. Measured from falling clock edge after stop bit of read transaction.

- 2. Power on is defined as the instant when supply voltages reach and remain at or above the minimum level specified value.
- 3. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 deasserted. The module should also meet optical and electrical specifications
- 4. Measured from falling clock edge after stop bit of write transaction.

Squelch and disable timings are defined in the table below:

Parameter	Symbol	Max	Unit	Conditions
Rx SquelchAssert Time	ton_Rxsq	80	us	Time from loss of Rx input signal untilthe squelched output condition isreached.
Rx SquelchDeassertTime	toff_Rxsq	80	us	Time from resumption of Rx input signalsuntil normal Rx output condition isreached.
Tx SquelchAssert Time	ton_Txsq	400	ms	Time from loss of Tx input signal untilthe squelched output condition isreached.
Tx SquelchDeassert Time	toff_Txsq	400	ms	Time from resumption of Tx input signalsuntil normal Tx output condition isreached.
Tx DisableAssert Time	ton_txdis	100	ms	Time from Tx Disable bit set (value =1b)1 until optical output falls below10% of nominal
Tx DisableDeassert Time	toff_txdis	400	ms	Time from Tx Disable bit cleared (value= 0b)1 until optical output rises above90% of nominal
Rx OutputDisable AssertTime	ton_rxdis	100	ms	Time from Rx Output Disable bit set(value = 1b)1 until Rx output fallsbelow 10% of nominal
Rx OutputDisable DeassertTime	toff_rxdis	100	ms	Time from Rx Output Disable bit cleared(value = 0b)1 until Rx output risesabove 90% of nominal
Squelch DisableAssert Time	ton_sqdis	100	ms	This applies to Rx and Tx Squelch and isthe time from bit set (value = 0b)1until squelch functionality is disabled.
Squelch				This applies to Rx and Tx Squelch and isthe
DisableDeassert	toff_sqdis	100	ms	time from bit cleared (value = Ob)1until squelch
Time				functionality is enabled

Note:

1. Measured from falling clock edge after stop bit of read transaction.

QSFP Device Addressing and Operation

The module employs a conventional TWS interface as described in the SFF-8436 standard

QSFP devices require an 8-bit device address word following a start condition to enable aready or write operation. The device address word consists of a mandatory sequence for thefirst seven most significant bits as shown in the table below. This is common to all QSFPdevices. The address word is shown below and is either A0h or A1h (Hexadecimal) (which is160 and 161 Decimal) depending on write or read operations.

Optical Interconnection Design Innovator

1	0	1	0	0	0	0	R/W
MSB							LSB

R/W='0' means write operation.

R/W='1' means read operation.

The QSFP compares device address with ModSelL=LOW to respond to host I²C signals. IfModeSelL=High, the QSFP ignores and I²C activities.

Read/Write Functionality

Read Operations (current address Read)

When the host requests a single byte read operation, the address read word (10100001) asshown below. Once acknowledged by the QSFP, the current address data word is seriallyclocked out. The host does not respond with an acknowledge; but does generate a STOPcondition once the data work is read.

QSFP current address Read operation

Read Operations (Random Read)

The random read operation requires a "dummy write operation to load in the target byteaddress as shown in the figure below. This is accomplished by the following sequence: Thetarget 8-bit data word address is sent following the device address write word (10100000) and acknowledged by the QSFP. The host then generates another START condition and a currentaddress read by sending a device read address (10100001). The QSFP acknowledges thedevice address and serially clocks out the requested data work. The host does not respondwith acknowledge, but does generate a STOP condition once the word is read.

		v	- Q	SF	ΡA	ADI	DR	>	,		<	-M	EM	OF	RY	AD	DF	}->			<(۵S	FP	A	DD)R·	>	2 22		2]		
II O S T	R	M S B						L S B	W R I T E		M S B							LSB		S T A R T	M S B						LSB	R E A D										NACK	STOP
		1	0	1	0	0	0	0	0	0	х	х	х	х	х	х	х	х	0		1	0	1	0	0	0	0	1	0	х	х	х	х	х	х	х	х	1	Î.
Q S F P										A C K									A C K					29-42					A C K	M S B		ΓΔ	W		Dı		L S B		

QSFP Random Read operation

Read Operations (Sequential Read)

Sequential reads are initialed by either a current address Read or a Random Address Read(see figures below). To specify a sequential read, the host responds with an acknowledge(instead of a STOP) after each data work. As long as the QSFP receives an acknowledge, itshall serially clock out sequential data words. The sequence is terminated when the hostresponds with a NACK and a STOP instead of an acknowledge.

		<(QS	ŝF	P,	AE	D	R	>																		0			9								
HOST	S T A R T	MSB	10 A A					LSB	R E A D										A C K									ACK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								NACK	
		া	0	-	0	0	0	0	1	0	х	х	х	х	х	х	х	х	0	х	х	х	х	х	х	х	х	0	Х	х	х	х	х	х	х	х	1	t
QSFP	8									A C K	M S B	2020						L S B		M S B							L S B		M S B							L S B		
					2						<[DA	ΤA	N I	10	RD) n	>		<0	DAT	A	wo	DR) n	+1:			<0	A	r A	w	DR	Dn	+x:	*		Γ

Sequential address read starting with QSFP Current Address

Sequential address read starting with Random QSFP read

Write Operation (BYTE Write)

A write operation requires an 8-bit data word address following the device address write word(10100000) and acknowledgement, as shown in the figure below. Upon receipt of this address,the QSFP shall again respond with a zero (ACK) to acknowledge and then clock in the first 8-bit data word. Following the receipt of the 8-bit data word, the QSFP shall output a zero (ACK) and the host master must terminate the write sequence with a STOP condition for the write cycle to begin. If a START condition is sent in place of a STOP condition (i.e. a repeated START per the 2-wire interface specification) the write is aborted and the data received during that operation is discarded. Upon receipt of the proper STOP condition, the QSFP enters an internally timed write cycle, t_{wr}, to internal memory. The QSFP disables its management interface input during this write cycle and shall not respond or acknowledge subsequent commands until the write is complete. Note that 2-wire interface "Combined Format" using repeated START conditions is not supported on QSFP write commands.

www.gigalight.com

Optical Interconnection Design Innovator

Write Operations (Sequential write)

QSFP's shall support up to a 4 sequential byte write without repeatedly sending QSFP address and memory address information as shown below. A "sequential" write is initiated the same way as a single byte write, but the host master does not send a stop condition after the first word is clocked in. Instead, after the QSFP acknowledges receipt of the first data word, the host can transmit up to three more data words. The QSFP shall send an acknowledge after each data word received. The host must terminate the sequential write sequence with a STOP condition or the write operation shall be aborted and data discarded. Note that 2-wire interface "combined format" using repeated START conditions is not supported on QSFP write commands.

QSFP Module Memory Map Description

The QSFP Memory Map, shown in figure 4 below, is used for serial ID, digital monitoring and certain control functions. The memory structure is arranged into a lower, single address space of 128 bytes (0-127) and multiple upper address space pages. The structure permits timely access to address in the lower page such as Interrupt Flags, Monitors, Control and various alarms. The upper memory pages are used for less time critical tasks such as ID information fields, Vendor ID, and various module and channels thresholds to activate various alarms. The lower page and Upper page 00 is always implemented. Upper page 01 is optional and currently not available. Upper page 02 is optional and implemented. Upper page 03 is implemented.

Optical Interconnection Design Innovator

Figure4.QSFP Memory Map

Lower Memory Map Description

The lower 128 bytes of the 2-wire serial bus address space is used to access a variety of measurements and diagnostic functions, a set of control functions, and a means to select which of the various upper memory map pages are accessed on subsequent reads. This portion of the address space is always directly addressable and thus is chosen for monitoring and control functions that may need to be repeatedly accessed. The definition of Identifier field is the same as page 00h Byte 128.

Lower Memory Map of the QSFP+ module.

Byte Address	Description	Туре
0	Identifier(1 Byte)	Read Only
1-2	Status(2 Bytes)	Read Only
3-21	Interrupt Flags(19 Bytes)	Read Only

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

Optical Interconnection Design Innovator

22-33	Module Monitors(12Bytes)	Read Only
34-81	Channel Monitors(48 Bytes)	Read Only
82-85	Reserved (4 Bytes)	Read Only
86-97	Control(12Bytes)	Read/Write
98-99	Reserved(2 Bytes)	Read/Write
100-106	Module and Channel Masks (7 Bytes)	Read/Write
107-126	Reserved (12 Bytes)	Read/Write
127	Page Select Byte	Read/Write

Status Indicator Bits

Byte	Bit	Name	Description
			Status Indicators
0	All	Identifier (1 Byte)	Equal to 0Dh
1	All	Reserved	
	7	Reserved	
	6	Reserved	
	5	Reserved	
	4	Reserved	
2	3	Reserved	
_	2	Flat_Mem	Upper memory flat (='0') or paged ('1'). It set high ='1'.
	1	IntL	Digital state of the IntL interrupt output pin.
	0	Data_Not_Ready	Indicates transceiver has not yet achieved power up and monitor data is not ready. Bit remains high until data is ready to be read at which time the device sets the bit low.

The Data_Not_Ready bit is high during module power up and prior to a valid suite of monitor readings. Once all monitor readings are valid, the bit is set low until the device is powered down.

Channel Status Interrupt Flags

A portion of the memory map (Bytes 3 through 21), form a flag field. Within this field, the status of LOS and Tx Fault as well as alarms and warnings for the various monitored items is reported. In normal conditions, the bits in this field are set to '0'. For the defined conditions of LOS, Tx Fault, module and channel alarms, the appropriate bit or bits are set to '1'.

The Channel Status Interrupt Flags, Module Monitor Interrupt Flags and Channel Monitor Interru	pt
Flags are defined below.	

Byte	Bit	Name	Description								
	Channel Status Interrupt Flags										
	7-4	Reserved									
	3	Rx4 LOS	Latched RX LOS indicator, channel 4								
3	2	Rx3 LOS	Latched RX LOS indicator, channel 3								
	1	Rx2 LOS	Latched RX LOS indicator, channel 2								
	0	Rx1 LOS	Latched RX LOS indicator, channel 1								
	7-4	Reserved									
	3	Tx4 Fault	Latched TX fault indicator, channel 4								
4	2	Tx3 Fault	Latched TX fault indicator, channel 3								
	1	Tx2 Fault	Latched TX fault indicator, channel 2								
	0	Tx1 Fault	Latched TX fault indicator, channel 1								
5	All	Reserved									

www.gigalight.com

Optical Interconnection Design Innovator

Notes: A portion of the memory map (Bytes 3 through 21), form a flag field. Within this field, the status of LOS and Tx Fault as well as alarms and warnings for the various monitored items is reported. In normal conditions, the bits in this field are set to '0'. For the defined conditions of LOS, Tx Fault, module and channel alarms, the appropriate bit or bits are set to '1'.

10 0. FC			module and channel alarms, the appropriate bit or bits are set to '1'. le Monitor Interrupt Flags
	7	L-Temp High Alarm	Latched high temperature alarm
	6	L- Temp Low Alarm	Latched low temperature alarm
6	5	L- Temp High Warning	Latched high temperature warning
-	4	L- Temp Low Warning	Latched low temperature warning
	3-0	Reserved	
	7	L-Vcc High Alarm	Latched high supply voltage alarm
	6	L-Vcc Low Alarm	Latched low supply voltage alarm
7	5	L-Vcc High Warning	Latched high supply voltage warning
	4	L-Vcc Low Warning	Latched low supply voltage warning
	3-0	Reserved	
8	All	Reserved	
0			el Monitor Interrupt Flags
	7	L-Rx1 Power High Alarm	Latched high RX power alarm, channel 1
	6	L-Rx1 Power Low Alarm	Latched low RX power alarm, channel 1
	5	L-Rx1 Power High Warning	Latched high RX power warning, channel 1
	4	L-Rx1 Power Low Warning	Latched low RX power warning, channel 1
9	3	L-Rx2 Power High Alarm	Latched high RX power alarm, channel 2
	2	L-Rx2 Power Low Alarm	Latched low RX power alarm, channel 2
	1	L-Rx2 Power High Warning	Latched high RX power warning, channel 2
	0	L-Rx2 Power Low Warning	Latched low RX power warning, channel 2
	7	L-Rx3 Power High Alarm	Latched high RX power alarm, channel 3
	6	L-Rx3 Power Low Alarm	Latched low RX power alarm, channel 3
	5	L-Rx3 Power High Warning	Latched high RX power warning, channel 3
	4	L-Rx3 Power Low Warning	Latched low RX power warning, channel 3
10	3	L-Rx4 Power High Alarm	Latched high RX power alarm, channel 4
	2	L-Rx4 Power Low Alarm	Latched low RX power alarm, channel 4
	1	L-Rx4 Power High Warning	Latched high RX power warning, channel 4
	0	L-Rx4 Power Low Warning	Latched low RX power warning, channel 4
	7	L-Tx1 Bias High Alarm	Latched high TX Bias alarm, channel 1
	6	L-Tx1 Bias Low Alarm	Latched low TX Bias alarm, channel 1
	5	L-Tx1 Bias High Warning	Latched high TX Bias warning, channel 1
	4	L-Tx1 Bias Low Warning	Latched low TX Bias warning, channel 1
11	3	L-Tx2 Bias High Alarm	Latched high TX Bias alarm, channel 2
	2	L-Tx2 Bias Low Alarm	Latched low TX Bias alarm, channel 2
	1	L-Tx2 Bias Low Alarm L-Tx2 Bias High Warning	Latched high TX Bias warning, channel 2
	0	L-Tx2 Bias Low Warning	Latched low TX Bias warning, channel 2
	7	L-Tx2 Bias Low Warning	Latched high TX Bias alarm, channel 3
		-	
	6	L-Tx3 Bias Low Alarm	Latched low TX Bias alarm, channel 3
	5	L-Tx3 Bias High Warning	Latched high TX Bias warning, channel 3
12	4	L-Tx3 Bias Low Warning	Latched low TX Bias warning, channel 3
	3	L-Tx4 Bias High Alarm	Latched high TX Bias alarm, channel 4
	2	L-Tx4 Bias Low Alarm	Latched low TX Bias alarm, channel 4
	1	L-Tx4 Bias High Warning	Latched high TX Bias warning, channel 4
	0	L-Tx4 Bias Low Warning	Latched low TX Bias warning, channel 4

www.gigalight.com

Optical Interconnection Design Innovator

1.11	barren norske se se		
	7	L-Tx1 Power High Alarm	Latched high TX power alarm, channel 1
	6	L-Tx1 Power Low Alarm	Latched low TX power alarm, channel 1
	5	L-Tx1 Power High Warning	Latched high TX power warning, channel 1
40	4	L-Tx1 Power Low Warning	Latched low TX power warning, channel 1
13	3	L-Tx2 Power High Alarm	Latched high TX power alarm, channel 2
	2	L-Tx2 Power Low Alarm	Latched low TX power alarm, channel 2
	1	L-Tx2 Power High Warning	Latched high TX power warning, channel 2
	0	L-Tx2 Power Low Warning	Latched low TX power warning, channel 2
	7	L-Tx3 Power High Alarm	Latched high TX power alarm, channel 3
	6	L-Tx3 Power Low Alarm	Latched low TX power alarm, channel 3
	5	L-Tx3 Power High Warning	Latched high TX power warning, channel 3
	4	L-Tx3 Power Low Warning	Latched low TX power warning, channel 3
14	3	L-Tx4 Power High Alarm	Latched high TX power alarm, channel 4
	2	L-Tx4 Power Low Alarm	Latched low TX power alarm, channel 4
	1	L-Tx4 Power High Warning	Latched high TX power warning, channel 4
	0	L-Tx4 Power Low Warning	Latched low TX power warning, channel 4
15-21	All	Reserved	

Module Monitoring Values

Module Monitoring Value is intended to measure module temperature and supply voltage. The internally measured Module temperature is represented as a 16-bit signed 2's complement value in increments of 1/256 degrees Celsius as described below. This representation yields a total range of -128° to $+127^{\circ}$. The operational values according to the module specification are considered valid between -10° and $+85^{\circ}$. The module temperature accuracy is better than ±3 degrees Celsius over the specified operating temperature and voltage.

Sign	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 -3	2-4	2 -5	2-6	2 ⁻⁷	2 ⁻⁸
	Temperature word bit weights representation														

The internally measured Module supply voltage is represented as a 16-bit unsigned integer with the voltage defined as the full 16 bit value (0 – 65535) with LSB equal to 100 μ Volt, yielding a total measurement range of 0 to +6.55 Volts. The accuracy of the voltage is than ±3% of the nominal value over specified operating temperature and voltage.

Byte	Bit	Name	Description				
	Module Monitoring Values						
22	All	Temperature MSB	Internally measured module temperature				
23	All	Temperature LSB					
24-25	All	Reserved					
26	All	Supply Voltage MSB	Internally measured module supply voltage				
27	All	Supply Voltage LSB					
28-33	All	Reserved					

Channel Monitoring Values

The Channel Monitors for RX Power and TX Bias are defined in the table below:

www.gigalight.com

Optical Interconnection Design Innovator

Byte	Bit	Name	Description
		Description of Channe	l Monitor Values (Lower Memory Map)
34	All	Rx1 power MSB	Internally measured RX input power, channel 1
35	All	Rx1 power LSB	
36	All	Rx2 power MSB	Internally measured RX input power, channel 2
37	All	Rx2 power LSB	
38	All	Rx3 power MSB	Internally measured RX input power, channel 3
39	All	Rx3 power LSB	
40	All	Rx4 power MSB	Internally measured RX input power, channel 4
41	All	Rx4 power LSB	
42	All	Tx1 Bias MSB	Internally measured TX bias, channel 1
43	All	Tx1 Bias LSB	
44	All	Tx2 Bias MSB	Internally measured TX bias, channel 2
45	All	Tx2 Bias LSB	
46	All	Tx3 Bias MSB	Internally measured TX bias, channel 3
47	All	Tx3 Bias LSB	
48	All	Tx4 Bias MSB	Internally measured TX bias, channel 4
49	All	Tx4 Bias LSB	
50	All	Tx1 power MSB	Internally measured TX output power, channel 1
51	All	Tx1 power LSB	
52	All	Tx2 power MSB	Internally measured TX output power, channel 2
53	All	Tx2 power LSB	
54	All	Tx3 power MSB	Internally measured TX output power, channel 3
55	All	Tx3 power LSB	
56	All	Tx4 power MSB	Internally measured TX output power, channel 4
57	All	Tx4 power LSB	
58	All	VCCTX_MONITOR_MSB	
59	All	VCCTX_MONITOR_LSB	
60	All	Vcc Rx MSB	Internally measured RX VCC
61	All	Vcc Rx LSB	
62	All	VCC1_MONITOR_MSB	
63	All	VCC1_MONITOR_LSB	
64	All	TEMP1_MONITOR_MSB	
65	All	TEMP1_MONITOR_LSB	
66-73	All	00h all bytes	Reserved Channel monitor

The description for the Laser Bias current and Receiver Power Monitors are detailed below.

Laser Bias Current: Measured TX bias current is in mA and are represented as a 16-bitunsigned integer with the current defined as the full 16 bit value (0 - 65535) with LSB equal to2 uA, yielding a total measurement range of 0 to 131 mA. Accuracy is vendor specific but must be better than ±10% of the manufacturer's nominal value over specified operating temperature and voltage.

Received Power: Measured RX received optical power is in mW and can represent either average received power or OMA depending upon how bit 3 of byte 220 (upper memory page00h) is set. Represented as a 16 bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 uW, yielding a total measurement range of 0 to 6.5535mW (~-40 to +8.2 dBm). Absolute accuracy is dependent upon the exact optical wavelength. For the vendor specified wavelength, accuracy shall be better than ± 3 dB

over specified temperature and voltage. This accuracy shall be maintained for input power levels up to the lesser of maximum transmitted or maximum received optical power per the appropriates tandard. It shall be maintained down to the minimum transmitted power minus cable plant loss (insertion loss or passive loss) per the appropriate standard. Absolute accuracy beyond this minimum required received input optical power range is vendor specific.

Control Bytes

There are 4 control bits to enable or disable each of the 4 transmitter channels. Disabling isdone by setting any one of the 4 bits of byte 86 to '1'. Bits 0÷1 of byte 93 controls the LPMode functionality of the module. The Control Bytes are described below:

Byte	Bit	Name	Description
			Description of the Control Bytes.
86	7-4	Reserved	
	3	Tx4_Disable	Read/write bit that allows software disable of transmitters
	2	Tx3_Disable	Read/write bit that allows software disable of transmitters
	1	Tx2_Disable	Read/write bit that allows software disable of transmitters
	0	Tx1_Disable	Read/write bit that allows software disable of transmitters
87-92	All	Reserved	All bits are ignored and read as '0's upon power up
93	2-7	Reserved	
	1	Power_set	Power set to low power mode. Default 0.
	0	Power_over-ride	Override of LPMode signal setting the power mode with software
94-99		Reserved	

Module and Channel Masks

The host can control each interrupt event from the QSFP module by masking the corresponding interrupt bits. When a mask bit is written as '1', an interrupt will not occur for this specific event. When the bit is unmasked ('0'), the QSFP will initiate an interrupt by asserting IntL to LOW when a specific event occurs. Using interrupt mask bits enable the host to use polling routine if desirable. The table below depicts the bits and the bytes to mask interrupt events.

Byte	Bit	Name	Description
		Description of Modu	ile and channel Interrupt masking bits
100	7-4	Reserved	
	3	M-Rx4 LOS	Masking bit for RX LOS indicator, channel 4
	2	M-Rx3 LOS	Masking bit for RX LOS indicator, channel 3
	1	M-Rx2 LOS	Masking bit for RX LOS indicator, channel 2
	0	M-Rx1 LOS	Masking bit for RX LOS indicator, channel 1
101	7-4	Reserved	
	3	M-Tx4 Fault	Masking bit for TX fault indicator, channel 4
	2	M-Tx3 Fault	Masking bit for TX fault indicator, channel 3
	1	M-Tx2 Fault	Masking bit for TX fault indicator, channel 2
	0	M-Tx1 Fault	Masking bit for TX fault indicator, channel 1
102	All	Reserved	
103	7	M-Temp High Alarm	Masking bit for high Temperature alarm
	6	M-Temp Low Alarm	Masking bit for low Temperature alarm
	5	M-Temp High Warning	Masking bit for high Temperature warning
	4	M-Temp Low Warning	Masking bit for low Temperature warning

Optical Interconnection Design Innovator

	3-0	Reserved	
104	7	M-Vcc High Alarm	Masking bit for high Vcc alarm
	6	M- Vcc Low Alarm	Masking bit for low Vcc alarm
	5	M- Vcc High Warning	Masking bit for high Vcc warning
	4	M- Vcc Low Warning	Masking bit for low Vcc warning
	3-0	Reserved	
105-106	All	Reserved	

Password and Page Select

Bytes 119-126 are reserved for an optional password entry function. The Password entry by tesare write only and will be retained until power down, reset, or rewritten by host. This function may be used to control read/ write access to vendor specific page 02h. Additionally, module vendors may use this function to implement write protection of Serial ID and other QSFP+ read only information. Passwords may be supplied to and used by Host manufacturers to limit write access in the User EEPROM Page 02h. Password access shall not be required to access QSFP+ defined data in the lower memory page 00h or in upper pages 00h, 02h and 03h. Notethat multiple module manufacturer passwords may be defined to allow selective access to reador write to various sections of memory as allowed above. Host manufacturer and module manufacturer passwords shall be distinguished by the high order bit (bit 7, byte 123). All host manufacturer passwords in the range of 80000000h to 7FFFFFFFh, and all module manufacturer passwords in the range of 80000000h to FFFFFFFFh. Host manufacturer passwords shall be initially set to 00001011h in new modules. Host manufacturer passwords may be changed by writing a new password in bytes 119-122 when the correct current Host manufacture password has been entered in 123-126, with the high order bit being ignored and forced to a value of 0 in the new password. The password entry field shall be set to 0000000hon power up and reset.

Data Address	Bit	Name of Field	Value	Description of field
107-118	All	Reserved	0000h Read/Write	
119-122	All	Password Change Entry Area (optional)	00000000h Read/Write	
123-126	All	Password Entry Area (optional)	00000000h Read/Write	
127	All	Page Select Byte	00h Read/Write	

Upper Memory Map Page 00h Description

Page 00h consists of the Serial ID and is used for read only identification information. The Serial ID is divided into the Base_ ID Fields, Extended ID Fields and Vendor Specific ID Fields. The format of the Serial ID Memory Map is shown below.

Upper memory map page 00h general description of the QSFP module.

Address	Size(Bytes)	Name	Description of Base ID Field
Base_ID Fie	elds		
128	1	Identifier	Identifier Type of serial transceiver
129	1	Ext. Identifier	Extended identifier of serial transceiver
130	1	connector	Code for connector type
131-138	8	Transceiver	Code for electronic compatibility or optical compatibility
139	1	Encoding	Code for serial encoding algorithm
140	1	BR,nominal	Nominal bit rate, units of 100 MBits/s
141	1	Extended RateSelect Compliance	Tags for Extended Rate Select compliance
142	1	Length(SMF)	Link length supported for SMF fiber in km
143	1	Length(E-50um)	Link length supported for EBW 50/125 um fiber, units of 2

www.gigalight.com

Optical Interconnection Design Innovator

			m
144	1	Length(50 um)	Link length supported for 50/125 um fiber, units of 1 m
145	1	Length(62.5 um)	Link length supported for 62.5/125 um fiber, units of 1 m
146	1	Length(Copper)	Link length supported for copper, units of 1 m
147	1	Device Tech	Device Technology
148-163	16	Vendor name	QSFP vendor name (ASCII)
164	1	Extended Transceiver	Extended Transceiver Codes for InfiniBand
165-167	3	Vendor OUI	QSFP vendor IEEE company ID
168-183	16	Vendor PN	Part number provided by QSFP vendor (ASCII)
184-185	2	Vendor rev	Revision level for part number provided by vendor (ASCII)
186-187	2	Wavelength	Nominal laser wavelength (wavelength=value/20 in nm)
188-189	2	Wavelength Tolerance	Guaranteed range of laser wavelength (+/- value) from
100-109	Z	Wavelength Tolerance	Nominal wavelength. (wavelength Tol.=value/200 in nm)
190	1	Max Case Temp	Maximum Case Temperature in Degrees C
191	1	CC_BASE	Check code for Base ID Fields(addresses 128-190)
Extended I	ID Fields		
192-195	4	Options	Rate Select, TX Disable, TX Fault, LOS
196-211	16	Vendor SN	Serial number provided by vendor (ASCII)
212-219	8	Date code	Vendor's manufacturing date code
220	1	Diagnostic Monitoring Type	Indicates which type of diagnostic monitoring is implemented (if any) in the transceiver. Bit 1, 0 Reserved
221	1	Enhanced Options	Indicates which optional enhanced features are implemented in the transceiver.
222	1	Reserved	Reserved
223	1	CC_EXT	Check code for the Extended ID Fields(addresses 192-222)
Vendor Sp	ecific ID Fields		
224-255	32	Vendor Specific	Vendor Specific EEPROM

Byte	Bit	Name of Bit	Description
		Identifie	r (Address 128)
128	All	Identifier	0Dh=QSFP+
		Extended Ide	ntifier (Address 129)
	7-6	Ext. Identifier	'11': Power Class 4 Module (3.5 W max. power consumption)
	5	Reserved	0
129	4	NO CLEI code present in Page 02h	0
	3	NO CDR in TX	0
	2	NO CDR in RX	0
	1-0	Reserved	0
		Module Connec	tor Type (Address 130)
130	All	Connector Type	07h = LC
		Transceiver Defi	nition (Address 131-138)
131	All	Connection Data	02h = 40GBase-LR 4
132-138	All	Reserved	
		Module Data Er	ncoding (Address 139)
139	All	Encoding	00h = unspecified (It is transparent for all given codes (01h-05h) in the standard.
		Module Extended Rate a	nd Length (Addresses 140-146)
140-141	All	Reserved	
142	All	SMF length support	0Ah (2km)
143-146	All	Reserved	
		Device Techn	ology (Address 147)
	7-4	Device Technology	04h = (FP laser at 1310nm).
	3		0: No wavelength control, 1: Active wavelength control (=0)
147	2		0: Uncooled transmitter device, 1: Cooled transmitter (=0)
	1		0: PIN detector, 1: APD detector (=0)
	0		0: Transmitter not tunable, 1: Transmitter tunable (=0)

Optical Interconnection Design Innovator

		16 Character Vendor	Name (Address 148-163)
148-163	All	Vendor Name	'Gigalight' (there are 7 ASCII spaces padded on the right
			to get 16 characters.)
			ver Codes (Address 164)
	7-4	Reserved	
	3	EDR Speed (20 Gb/s)	0
164	2	QDR Speed (10 Gb/s)	1 (support QDR per lane)
	1	DDR Speed (5.0 Gb/s)	1 (support DDR per lane)
	0	SDR Speed (2.5 Gbps)	1 (support SDR per lane)
		Vendor Informati	on (Address 165-185)
165-167	All	Vendor OUI	Organization Unique Identifier
168-183	All	Vendor PN	GQS-SPO400-IR4CA
184-185	All	Vendor Rev	Product Revision number
	1	Wavelength and Waveleng	th Tolerance (Address 186-189)
186-189		Reserved	
			nperature (Address 190)
190	All		Standard Temp = 700C = 46h.
190	All	Check Code F	
		Check Code E	Base (Address 191)
191	All	CC Base	Low 8 bits of the sum of the content of all page00
-		=	byte from 128 to 190 inclusive.
		Module Option	s (Address 192-195)
192	All		Reserved
193	7-1		Reserved
190	0	Rx Amplitude Programming	'1' - implemented
	7-4	Options	Reserved
194	3	Rx_Squelch Disable implemented	'1' - implemented
	2	Rx_Output Disable capable	'1' - implemented
	1	Tx Squelch Disable implemented	'0' – Not implemented
	0	Tx Squelch implemented:	'0' – Not implemented
	7	Memory page 02 provided	'1' - implemented
	6	Memory page 01 provided	'0' – Not implemented
	5	RATE_SELECT is implemented	'0' – Not implemented
195	4	TX_DISABLE is implemented	'1' - implemented
	3	TX FAULT signal implemented	'1' - implemented
	2	Tx Squelch implemented	'0' – Not implemented
	1	TX Loss of Signal implemented	'0' – Not implemented
h	0		Reserved
		Vendor SN (Address 196-211)
196-211	All	Vendor SN	yywwcccc (yy – Year, ww – Work week , cccc – Counter)
100 211	7 41		de (Address 212-219)
212-213	All	Year	Two low order ASCII digits of year (2000=00).
212-213			Two ASCII digits of month (January=01) through
214-215	All	Month	(December=12).
216-217	All	Dev	ASCII Code of Day of Month (01-31)
210-217 218-219	All	Day Lot Code	Vendor Specific Lot number
210-219			
	7.4		ring Type (Address 220)
	7-4	Reserved	
220	3	Rx Monitoring is Average Power	'1'
		('1') or OMA ('0')	
	2-0	Reserved	
		Check Code Ext	ended (Address 223)
223	All	CC_EXT	Low 8 bits of the sum of the content of all page00 byte from 19
220			to 222 inclusive.
		Vendor Specific EE	PROM (Address 224-255)
			Vendor Specific Code

Upper Memory Map Page Description

www.gigalight.com

Optical Interconnection Design Innovator

Upper Memory Map Page	Description		
01h	Not implemented for user.		
02h	Page 02 is optionally provided as user writable EEPROM. The host system may read or write this memory for any purpose		
	Byte Address	Description	Туре
	128-175	Module Thresholds(48 Bytes)	Read-Only
	176-223	Channel Thresholds(48 Bytes)	Read-Only
03h	224-225	Reserved(2 Bytes)	Read-Only
	226-239	Vendor Specific Channel Controls(14 Bytes)	Read/Write
	240-241	Optional Channel Controls(2 Bytes)	Read/Write
	242-253	Channel Monitor Masks(12 Bytes)	Read/Write
	254-255	Reserved(2 Bytes)	Read/Write

Output Amplitude Control

The output voltage levels of the 4 RX lanes are set using a global register that controls all fourlanes simultaneously. The register definition and default value are given in the table below.

Output Control per Lane			
Byte	Size(Bytes)	Name	Default Value
238	3-0	RX1-RX4 output amplitude	'2'h

Rx Squelch and Output Disable Control

This enables to control RX_SQ and RX_DIS operation of the transceiver. The default value is '0' upon power up. Therefore Squelch is operational when power up. When '1' is written for specific channel, then this channel Squelch functionality will be disabled. When writing '1' in RX_ Output_ Disable, the output of this specific channel will be disabled.

Squelch and Output Disable Controls				
Byte	Bits	Name	Description	
240	7	Rx4_SQ_Disable	Rx Squelch Disable, channel 4	
	6	Rx3_SQ_Disable	Rx Squelch Disable, channel 3	
	5	Rx2_SQ_Disable	Rx Squelch Disable, channel 2	
	4	Rx1_SQ_Disable	Rx Squelch Disable, channel 1	
241	7	Rx4_ Output _Disable	Rx Output Disable, channel 4	
	6	Rx3_ Output _Disable	Rx Output Disable, channel 3	
	5	Rx2_ Output _Disable	Rx Output Disable, channel 2	
	4	Rx1_Output_Disable	Rx Output Disable, channel 1	
	3-0	Reserved		

Channel Monitor Masks

The masking Bits for the Channel Monitor Functions are defined below. When writing '1' in a specific bit location, then this specific channel interrupt is disabled upon reaching specific threshold parameter. The bits can mask High or Low Warning signals or Alarm signals for each individual receiving and transmitting channels.

Optical Interconnection Design Innovator

	Channel Monitor Masks			
Byte	Bits	Name	Description	
242	7	M-Rx1 Power High Alarm	Masking bit for high RX Power alarm, channel 1	
	6	M-Rx1 Power Low Alarm	Masking bit for low RX Power alarm, channel 1	
	5	M-Rx1 Power High warning	Masking bit for high RX Power warning, channel 1	
	4	M-Rx1 Power Low warning	Masking bit for low RX Power warning, channel 1	
	3	M-Rx2 Power High Alarm	Masking bit for high RX Power alarm, channel 2	
	2	M-Rx2 Power Low Alarm	Masking bit for low RX Power alarm, channel 2	
	1	M-Rx2 Power High warning	Masking bit for high RX Power warning, channel 2	
	0	M-Rx2 Power Low warning	Masking bit for low RX Power warning, channel 2	
243	7	M-Rx3 Power High Alarm	Masking bit for high RX Power alarm, channel 3	
	6	M-Rx3 Power Low Alarm	Masking bit for low RX Power alarm, channel 3	
	5	M-Rx3 Power High warning	Masking bit for high RX Power warning, channel 3	
	4	M-Rx3 Power Low warning	Masking bit for low RX Power warning, channel 3	
	3	M-Rx4 Power High Alarm	Masking bit for high RX Power alarm, channel 4	
	2	M-Rx4 Power Low Alarm	Masking bit for low RX Power alarm, channel 4	
	1	M-Rx4 Power High warning	Masking bit for high RX Power warning, channel 4	
	0	M-Rx4 Power Low warning	Masking bit for low RX Power warning, channel 4	
244	7	M-Tx1 Bias High Alarm	Masking bit for high TX Bias alarm, channel 1	
	6	M-Tx1 Bias Low Alarm	Masking bit for low TX Bias alarm, channel 1	
	5	M-Tx1 Bias High warning	Masking bit for high TX Bias warning, channel 1	
	4	M-Tx1 Bias Low warning	Masking bit for low TX Bias warning, channel 1	
	3	M-Tx2 Bias High Alarm	Masking bit for high TX Bias alarm, channel 2	
	2	M-Tx2 Bias Low Alarm	Masking bit for low TX Bias alarm, channel 2	
	1	M-Tx2 Bias High warning	Masking bit for high TX Bias warning, channel 2	
	0	M-Tx2 Bias Low warning	Masking bit for low TX Bias warning, channel 2	
245	7	M-Tx3 Bias High Alarm	Masking bit for high TX Bias alarm, channel 3	
	6	M-Tx3 Bias Low Alarm	Masking bit for low TX Bias alarm, channel 3	
	5	M-Tx3 Bias High warning	Masking bit for high TX Bias warning, channel 3	
	4	M-Tx3 Bias Low warning	Masking bit for low TX Bias warning, channel 3	
	3	M-Tx4 Bias High Alarm	Masking bit for high TX Bias alarm, channel 4	
	2	M-Tx4 Bias Low Alarm	Masking bit for low TX Bias alarm, channel 4	
	1	M-Tx4 Bias High warning	Masking bit for high TX Bias warning, channel 4	
	0	M-Tx4 Bias Low warning	Masking bit for low TX Bias warning, channel 4	
246	7	M-Tx1 Power High Alarm	Masking bit for high TX Power alarm, channel 1	
-	6	M-Tx1 Power Low Alarm	Masking bit for low TX Power alarm, channel 1	
	5	M-Tx1 Power High warning	Masking bit for high TX Power warning, channel 1	
	4	M-Tx1 Power Low warning	Masking bit for low TX Power warning, channel 1	
	3	M-Tx2 Power High Alarm	Masking bit for high TX Power alarm, channel 2	
	2	M-Tx2 Power Low Alarm	Masking bit for low TX Power alarm, channel 2	
	1	M-Tx2 Power High warning	Masking bit for high TX Power warning, channel 2	
	0	M-Tx2 Power Low warning	Masking bit for low TX Power warning, channel 2	
247	7	M-Tx3 Power High Alarm	Masking bit for high TX Power alarm, channel 3	
	6	M-Tx3 Power Low Alarm	Masking bit for low TX Power alarm, channel 3	
	5	M-Tx3 Power High warning	Masking bit for high TX Power warning, channel 3	
	4	M-Tx3 Power Low warning	Masking bit for low TX Power warning, channel 3	
	3	M-Tx4 Power High Alarm	Masking bit for high TX Power alarm, channel 4	
	2	M-Tx4 Power Low Alarm	Masking bit for low TX Power alarm, channel 4	
	1	M-Tx4 Power High warning	Masking bit for high TX Power warning, channel 4	
	0	M-Tx4 Power Low warning	Masking bit for low TX Power warning, channel 4	
248-255	All	Reserved		
240-200		INCOCIVEU		

Mechanical Dimensions

Regulartory Compliance

Requirement	Standard
Electromagnetic Interference (EM)	Compliant to Class B requirements for FCC Part15 and CISPR 22
RF Immunity (RFI)	Compliant to EN/IEC 61000-4-3 and GR-1089-CORE Issue 4
Electrostatic Discharge (ESD)	Compliant to EN/IEC 61000-4-2 and GR-1089-CORE Issue 4 JEDEC JESD22-A114-B (2Kv limit)
Eye Safety	Compliant to Class 1M Laser Device per IEC60825-1
Lead Free Requirement (RoHS)	Compliant to 2002/95/EC RoHS 6/6 Directive

Ordering information

Part Number	Product Description
GQS-SPO400-IR4C	40G QSFP+ LR4 Lite, 2km on single-mode fiber

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

Optical Interconnection Design Innovator

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: sales@gigalight.com Web : https://www.gigalight.com/