

50

GIGALIGHT 2x100GBASE-SR4 QSFP-DD Active Optical Cable P/N: GQD-MDO201-xxxC

Features

- ✓ 8 channels full-duplex transceiver modules
- ✓ Transmission data rate up to 26Gbps per channel
- ✓ Compliant with QSFP-DD MSA V5.0 and CMIS V4.0
- ✓ 8 channels 850nm VCSEL array
- ✓ 8 channels PIN photo detector array
- ✓ Internal CDR circuits on both receiver and transmitter channels
- ✓ Support CDR bypass
- ✓ Low power consumption <4W
- ✓ Hot Pluggable QSFP DD form factor
- ✓ Maximum link length of 70m on OM3 Multimode Fiber (MMF)and 100m on OM4 MMF
- ✓ MPO24 connector receptacle
- ✓ Built-in digital diagnostic functions
- ✓ Operating case temperature 0°C to +70°C
- ✓ 3.3V power supply voltage
- ✓ RoHS 6 compliant(lead free)

Applications

✓ IEEE 802.3bm 100GBASE SR4

Description

The Gigalight Technologies GQD-MDO201-xxxC is an Eight-Channels, Pluggable, Parallel, Fiber-Optic QSFP Double Density for 2x100 Gigabit Ethernet Applications. This transceiver is a high performance module for short-range multi-lane data communication and interconnection applications. It integrates eight data lanes in each direction with 8x25.78125Gbps bandwidth. Each lane can operates at 25.78125Gbps up to 70 m using OM3 fiber or 100 m using OM4 fiber. These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 76 contact edge type connector. The optical interface uses a 24 fiber MTP (MPO) connector. This module incorporates Gigalight Technologies proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.

Ontical Interconnection Design Innovator

Figure 1. Module Block Diagram

The 2x100GBASE-SR4 QSFP DD is one kind of parallel transceiver. VCSEL and PIN array package is key technique, through I2C system can contact with module.

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	V _{cc}	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Ts	-20	85	٥C
Case Operating Temperature	T _c	0	70	٥C
Humidity (non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Deremeter	Cumhal	Min	Typical	Max	L Insid
Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	V _{cc}	3.13	3.3	3.47	V
Operating Case Temperature	Tc	0		70	٥C
Data Rate Per Lane	fd		25.78125		Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			4	W
Fiber Bend Radius	Rb	3			cm

Electrical Specifications

Parameter	Symbol	Min	Typical	Мах	Unit
Differential Input Impedance	Z _{in}	90	100	110	ohm

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

Optical Interconnection Design Innovator

Differential Output Impedance	Zout	90	100	110	ohm
Differential Input Voltage Amplitude ¹	ΔV _{in}	300		1100	mVp-p
Differential Output Voltage Amplitude ²	ΔV_{out}	500		800	mVp-p
Skew	Sw			300	ps
Bit Error Rate	BER			5E-5	
Input Logic Level High	Vih	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	Vон	VCC-0.5		VCC	V
Output Logic Level Low	V _{OL}	0		0.4	V

Note:

- 1. BER=5E-5; PRBS 2^31-1@25.78125Gbps. Pre-FEC
- 2. Differential input voltage amplitude is measured between TxnP and TxnN
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	
Transmitter						
Center Wavelength	λς	840	850	860	nm	
RMS Spectral Width	Δλ	-	-	0.6	nm	
Average Launch Power (each lane)	Pout	-8.4	-	2.4	dBm	
Optical Modulation Amplitude (each lane) OMA -6.4 3				dBm		
Transmitter and Dispersion Eye Closure (each	TDEC			4.3	dB	
Extinction Ratio ER 3 -				-	dB	
Average Launch Power of OFF Transmitter (each	Poff			-30	dB	
Eye Mask Coordinates ¹ :X1, X2, X3, Y1, Y2, Y3 {0.3, 0.38, 0.45, 0.35, 0.41, 0.5}						
R	eceiver					
Center Wavelength	λ _c	840	850	860	nm	
Stressed Receiver Sensitivity in OMA ²				-5.2	dBm	
Average Power at Receiver		-10.3		2.4	dBm	
Receiver Reflectance	R _R			-12	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert – OMA	LOSD			-7.5	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Note:

1. Hit Ratio = 5×10^{-5}

2. Measured with conformance test signal at TP3 for BER=5E-5

Pin Description

Pin	Logic	Symbol	Name/Description
1		GND	Module Ground ¹
2	CML-I	Tx2-	Transmitter inverted data input
3	CML-I	Tx2+	Transmitter non-inverted data input
4		GND	Module Ground ¹

Optical Interconnection Design Innovator

31LVTTL-1Initializedpad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+37CML-ITx1-38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2				
7 GND Module Ground¹ 8 LVTTL-1 MODSEIL Module Reset² 9 LVTTL-1 Resett Module Reset² 10 VCCRx +3.3V Receiver Power Supply 11 LVCMOS-I/O SCL 2-wire Serial interface dota² 13 GND Module Ground¹ 14 CML-0 RX3+ Receiver non-inverted data output 15 CML-0 RX1+ Receiver non-inverted data output 16 GND Module Ground¹ 14 20 GNL-0 RX1+ Receiver non-inverted data output 18 CML-0 RX1+ Receiver non-inverted data output 20 GND Module Ground¹ 121 21 CML-0 RX2+ Receiver inverted data output 22 CML-0 RX2+ Receiver inverted data output 23 GND Module Ground¹ 121 24 CML-0 RX4+ Receiver inverted data output 25 CML-0 RX4+ Receiver inverted data ou				· · · · · · · · · · · · · · · · · · ·
8 LVTTL-I MODSEIL Module Reset? 9 LVTTL-I Resett. Module Reset? 10 VCCRX +3.3V Receiver Power Supply 11 LVCMOS-I/O SCL 2-wire Serial Interface clock? 12 LVCMOS-I/O SDA 2-wire Serial Interface clock? 13 GND Module Ground1 Module Ground1 14 CML-O RX3+ Receiver non-inverted data output 15 CML-O RX1+ Receiver inverted data output 16 GND Module Ground1 1 17 CML-O RX1+ Receiver inverted data output 18 CML-O RX1+ Receiver inverted data output 20 GND Module Ground1 1 21 CML-O RX2+ Receiver inverted data output 22 CML-O RX4+ Receiver inverted data output 23 GND Module Ground1 1 24 CML-O RX4+ Receiver inverted data output 25 CML-O <td></td> <td>CML-I</td> <td></td> <td></td>		CML-I		
9 LVTIL-I Resett. Module Reset ² 10 VCCRx +3.3V Receiver Power Supply 11 LVCMOS-I/O SCL 2-wire Serial interface clock ² 12 LVCMOS-I/O SDA 2-wire Serial interface clock ² 13 GND Module Ground ¹ 1 14 CML-O RX3+ Receiver inverted data output 15 CML-O RX3+ Receiver inverted data output 16 GND Module Ground ¹ 1 17 CML-O RX1+ Receiver inverted data output 18 CML-O RX1+ Receiver inverted data output 20 GND Module Ground ¹ 1 21 CML-O RX2- Receiver inverted data output 23 GND Module Ground ¹ 1 24 CML-O RX4+ Receiver inverted data output 26 GND Module Ground ¹ 1 27 LVTTL-O ModPrisL Module Ground ¹ 1 28 LVTTL	-			
10 VCCRx +3.3V Receiver Power Supply 11 LVCMOS-I/O SCL 2-wire Serial interface data ² 12 LVCMOS-I/O SDA 2-wire Serial interface data ² 13 GND Module Ground ¹ 14 CML-O RX3- Receiver inverted data output 15 CML-O RX3- Receiver inverted data output 16 GND Module Ground ¹ 1 17 CML-O RX1+ Receiver inverted data output 19 GND Module Ground ¹ 1 20 GND Module Ground ¹ 1 21 CML-O RX2- Receiver inverted data output 22 CML-O RX4+ Receiver inverted data output 23 GND Module Ground ¹ 1 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Ground ¹ 30 VCCT x +3.3V Transmitter Power Supply <	-			
11 LVCMOS-I/O SCL 2-wire Serial interface clock* 12 LVCMOS-I/O SDA 2-wire Serial interface clock* 13 GND Module Ground* 14 CML-O RX3+ Receiver inverted data output 15 CML-O RX3+ Receiver inverted data output 16 GND Module Ground* 1 17 CML-O RX1+ Receiver inverted data output 18 CML-O RX1+ Receiver inverted data output 20 GND Module Ground* 21 CML-O RX2+ Receiver inverted data output 22 CML-O RX2+ Receiver inverted data output 23 GND Module Ground* 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Ground* Module down to GND 28 LVTTL-O Initialization mode; in legacy QSFP applications, the InitMode pad is called LPMODE 29 VCC		LVTTL-I		
12 LVCMOS-I/O SDA 2-wire Serial interface data ² 13 GND Module Ground ¹ 14 CML-O RX3+ Receiver non-inverted data output 15 CML-O RX3+ Receiver inverted data output 16 GND Module Ground ¹ 17 CML-O RX1+ Receiver non-inverted data output 18 CML-O RX1+ Receiver non-inverted data output 19 GND Module Ground ¹ 11 20 GND Module Ground ¹ 12 21 CML-O RX2+ Receiver non-inverted data output 23 GND Module Ground ¹ 12 24 CML-O RX4+ Receiver non-inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Present, internal pulled down to GND 28 LVTTL-O Intl Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 33 31				
13 GND Module Ground ¹ 14 CML-O RX3+ Receiver non-inverted data output 15 CML-O RX3- Receiver inverted data output 16 GND Module Ground ¹ 17 CML-O RX1+ Receiver inverted data output 18 CML-O RX1+ Receiver inverted data output 19 GND Module Ground ¹ 20 GND Receiver inverted data output 21 CML-O RX2+ Receiver inverted data output 22 CML-O RX4+ Receiver inverted data output 23 GND Module Ground ¹ Module Ground ¹ 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Ground ¹ 27 LVTTL-O Interrupt output, should be pulled wown to GND 28 LVTTL-O Interrupt output, should be pulled up on host board ² 29 VCCTx 43.3V Power Supply <t< td=""><td></td><td></td><td></td><td></td></t<>				
14 CML-0 RX3+ Receiver non-inverted data output 15 CML-0 RX3- Receiver inverted data output 16 GND Module Ground ¹ 17 CML-0 RX1+ Receiver inverted data output 18 CML-0 RX1+ Receiver inverted data output 19 GND Module Ground ¹ 20 GND Module Ground ¹ 21 CML-0 RX2- Receiver non-inverted data output 23 GND Module Ground ¹ 24 CML-0 RX4+ Receiver non-inverted data output 25 CML-0 RX4+ Receiver non-inverted data output 26 GND Module Ground ¹ Module Ground ¹ 27 LVTTL-0 ModPrsL Module Ground ¹ 28 LVTTL-0 Interrupt output, should be pulled up on host board ² 29 VCC1 +3.3V Power Supply 31 LVTTL-1 Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹	-	LVCMOS-I/O		
15 CML-0 RX3- Receiver inverted data output 16 GND Module Ground ¹ 17 CML-0 RX1+ Receiver non-inverted data output 18 CML-0 RX1+ Receiver inverted data output 19 GND Module Ground ¹ 20 GND Module Ground ¹ 21 CML-0 RX2- Receiver inverted data output 23 GND Module Ground ¹ 24 CML-0 RX4- Receiver inverted data output 25 CML-0 RX4- Receiver inverted data output 26 GND Module Ground ¹ Module Ground ¹ 27 LVTTL-0 ModPrsL Module Ground ¹ 28 LVTTL-0 Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-1 Initialization mode; In legacy QSFP applications, the InitMode paid is called LPMODE 32 GND Module Ground ¹ 33 CML-1 TX3- Transmitter non-inverted data input	-			
16 GND Module Ground ¹ 17 CML-O RX1+ Receiver non-inverted data output 18 CML-O RX1- Receiver inverted data output 19 GND Module Ground ¹ 20 GND Module Ground ¹ 21 CML-O RX2- Receiver inverted data output 22 CML-O RX2+ Receiver inverted data output 23 GND Module Ground ¹ 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Ground ¹ 27 LVTTL-O ModPrsL Module Ground ¹ 28 LVTTL-O Intt Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 30 VCCT +3.3V Power Supply 31 LVTTL-I Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 33	-			Receiver non-inverted data output
17CML-ORX1+Receiver non-inverted data output18CML-ORX1-Receiver inverted data output19GNDModule Ground120GNDModule Ground121CML-ORX2-Receiver inverted data output22CML-ORX2+Receiver non-inverted data output23GNDModule Ground124CML-ORX4+Receiver non-inverted data output25CML-ORX4+Receiver non-inverted data output26GNDModule Ground127LVTTL-OModPrsLModule Ground128LVTTL-OIntLInterrupt output, should be pulled up on host board229VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+34CML-ITx3+35GNDModule Ground136CML-ITx1+37CML-ITx1+38GNDModule Ground139GNDModule Ground141CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground144CML-ITx8+45GNDModule Ground146ReservedFor future use47V		CML-O		
18CML-ORX1-Receiver inverted data output19GNDModule Ground120GNDModule Ground121CML-ORX2-Receiver inverted data output22CML-ORX2+Receiver inverted data output23GNDModule Ground124CML-ORX4+Receiver inverted data output25CML-ORX4+Receiver inverted data output26GNDModule Ground127LVTTL-OModPrsLModule Present, internal pulled down to GND28LVTTL-OInttInterrupt output, should be pulled up on host board229VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitMode33CML-ITx3+34CML-ITx3+35GNDModule Ground136CML-ITx1+37CML-ITx1+38GNDModule Ground139GNDModule Ground141CML-ITx6+42GNDModule Ground143CML-ITx6+44CML-ITx8+45GNDModule Ground144CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Ground148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 1				
19 GND Module Ground ¹ 20 GND Module Ground ¹ 21 CML-O RX2- Receiver inverted data output 22 CML-O RX2+ Receiver non-inverted data output 23 GND Module Ground ¹ 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver inverted data output 26 GND Module Ground ¹ 27 LVTTL-O ModPrsL Module Ground ¹ 28 LVTTL-O Init Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-I InitMode Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 1 33 CML-I Tx3+ Transmitter non-inverted data input 34 CML-I Tx1+ Transmitter inverted data input 35 GND Module Ground ¹ 38 GND Module Ground ¹ 3				•
20 GND Module Ground ¹ 21 CML-O RX2- Receiver inverted data output 22 CML-O RX2+ Receiver inverted data output 23 GND Module Ground ¹ 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output 26 GND Module Ground ¹ 1 27 LVTTL-O ModPisL Module Ground ¹ 28 LVTTL-O ModPisL Module Present, internal pulled down to GND 28 LVTTL-O Int Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-I InitMode Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 1 33 CML-I Tx3+ Transmitter inverted data input 34 GNL-I Tx1+ Transmitter non-inverted data input 37 CML-I Tx1+ Transmitter inverted data input	-	CML-O		
21 CML-O RX2- Receiver inverted data output 22 CML-O RX2+ Receiver non-inverted data output 23 GND Module Ground ¹ 24 CML-O RX4+ Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output 26 GND Module Ground ¹ 27 LVTTL-O Int Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-I Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 33 CML-I Tx3+ 34 CML-I Tx3+ 35 GND Module Ground ¹ 36 CML-I Tx1+ 37 CML-I Tx1+ 38 GND Module Ground ¹ 39 GND Module Ground ¹ 41 CML-I Tx6- Transmitter inverted data input 42 GND Module Gro	-			
22 CML-O RX2+ Receiver non-inverted data output 23 GND Module Ground ¹ 24 CML-O RX4- Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output 26 GND Module Ground ¹ 27 LVTTL-O ModPrsL Module Ground ¹ 28 LVTTL-O Intt Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 31 LVTTL-I Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 33 CML-I Tx3+ 34 CML-I Tx3+ 35 GND Module Ground ¹ 36 CML-I Tx1+ 37 CML-I Tx1+ 38 GND Module Ground ¹ 39 GND Module Ground ¹ 41 CML-I Tx1+ Transmitter inverted data input 42 GND Module Ground ¹ 39 GND Module Ground ¹ <td></td> <td></td> <td></td> <td></td>				
23 GND Module Ground1 24 CML-O RX4- Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output 26 GND Module Ground1 27 LVTTL-O ModPrsL Module Present, internal pulled down to GND 28 LVTTL-O IntL Interrupt output, should be pulled up on host board2 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-I Initialization mode; In legacy QSFP applications, the InitMode pai is called LPMODE 32 GND Module Ground1 33 CML-I Tx3+ Transmitter non-inverted data input 34 CML-I Tx3+ Transmitter inverted data input 35 GND Module Groun1 Module Groun1 38 GND Module Groun1 Module Groun1 39 GND Module Groun1 Module Groun1 39 GND Module Groun1 Module Groun1 41 CML-I Tx6- Transmitter inverted data input 42 GND				
24 CML-O RX4- Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output 26 GND Module Ground ¹ 27 LVTTL-O ModPrsL Module Present, internal pulled down to GND 28 LVTTL-O IntL Interrupt output, should be pulled up on host board ² 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Transmitter Power Supply 31 LVTTL-I InitiMode Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground ¹ 1 33 CML-I Tx3+ Transmitter non-inverted data input 34 CML-I Tx3- Transmitter non-inverted data input 35 GND Module Ground ¹ 1 36 CML-I Tx1+ Transmitter inverted data input 37 CML-I Tx6- Transmitter inverted data input 38 GND Module Ground ¹ 1 39 GND Module Ground ¹ 1 41 CML-I Tx6- Transmi	22	CML-O	RX2+	Receiver non-inverted data output
25CML-ORX4+Receiver non-inverted data output26GNDModule Ground127LVTTL-OModPrsLModule Ground128LVTTL-OIntLInterrupt output, should be pulled up on host board229VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitMode32GNDModule Ground133CML-ITx3+34CML-ITx3+35GNDModule Ground136CML-ITx1+37CML-ITx1+38GND39GNDModule Ground139GNDModule Ground134CML-ITx3+35GND44CML-I45GNDModule Ground143CML-I44CML-I45GND46Reserved47VS149VS249VS24949	23		GND	
26 GND Module Ground1 27 LVTTL-O ModPrsL Module Present, internal pulled down to GND 28 LVTTL-O IntL Interrupt output, should be pulled up on host board2 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply 31 LVTTL-I InitMode Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 32 GND Module Ground1 Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE 34 CML-I Tx3+ Transmitter non-inverted data input 34 CML-I Tx1+ Transmitter non-inverted data input 35 GND Module Ground1 36 CML-I Tx1+ Transmitter inverted data input 37 CML-I Tx1+ Transmitter inverted data input 39 GND Module Ground1 Module Ground1 39 GND Module Ground1 Module Ground1 41 CML-I Tx6+ Transmitter inverted data input 42 GND Module Ground1 Module Ground1 43	24	CML-O	RX4-	Receiver inverted data output
27LVTTL-OModPrsLModule Present, internal pulled down to GND28LVTTL-OIntLInterrupt output, should be pulled up on host board229VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+34CML-ITx3-35GNDModule Ground136CML-ITx1+37CML-ITx1+38GNDModule Ground139GNDModule Ground134CML-ITx1+37CML-ITx1+40CML-ITx6-41CML-ITx6-43CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Ground48VCCRx1+3.3V Power Supply49VS2Module Vender Specific 1	25	CML-O	RX4+	Receiver non-inverted data output
28LVTTL-OIntLInterrupt output, should be pulled up on host board229VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitiModeInitialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3+Transmitter non-inverted data input35GNDModule Ground136CML-ITx1+37CML-ITx1+38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Ground148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 1	26		GND	Module Ground ¹
29VCCTx+3.3V Transmitter Power Supply30VCC1+3.3V Power Supply31LVTTL-IInitModeInitialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+37CML-ITx1+38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND
30VCC1+3.3V Power Supply31LVTTL-IInitiModeInitialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+37CML-ITx1-38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Ground48VCCRx1+3.3V Power Supply49VS2Module Vender Specific 1	28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board ²
31LVTTL-IInitModeInitialization mode: In legacy QSFP applications, the InitMode pad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+37CML-ITx1-38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2				+3.3V Transmitter Power Supply
31LVTTL-1Initialiduepad is called LPMODE32GNDModule Ground133CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+Transmitter non-inverted data input37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	30		VCC1	+3.3V Power Supply
33CML-ITx3+Transmitter non-inverted data input34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+Transmitter non-inverted data input37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE
34CML-ITx3-Transmitter inverted data input35GNDModule Ground136CML-ITx1+Transmitter non-inverted data input37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-Transmitter inverted data inputTransmitter inverted data input41CML-ITx6+42GNDModule Ground143CML-ITx8-44CML-ITx8+45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	32		GND	Module Ground ¹
35GNDModule Ground136CML-ITx1+Transmitter non-inverted data input37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground146Reserved47VS1Module Ground48VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	33	CML-I	Tx3+	Transmitter non-inverted data input
36CML-ITx1+Transmitter non-inverted data input37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-41CML-ITx6+42GNDModule Ground143CML-ITx8+44CML-ITx8+45GNDModule Ground46Reserved47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	34	CML-I	Tx3-	Transmitter inverted data input
37CML-ITx1-Transmitter inverted data input38GNDModule Ground139GNDModule Ground140CML-ITx6-Transmitter inverted data input41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground143CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground146ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	35		GND	Module Ground ¹
38GNDModule Ground139GNDModule Ground140CML-ITx6-Transmitter inverted data input41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground143CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	36	CML-I	Tx1+	Transmitter non-inverted data input
39GNDModule Ground140CML-ITx6-Transmitter inverted data input41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground143CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	37	CML-I	Tx1-	Transmitter inverted data input
40CML-ITx6-Transmitter inverted data input41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground ¹ 43CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	38		GND	Module Ground ¹
41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground143CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	39		GND	Module Ground ¹
41CML-ITx6+Transmitter non-inverted data input42GNDModule Ground143CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	40	CML-I	Tx6-	Transmitter inverted data input
43CML-ITx8-Transmitter inverted data input44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	41	CML-I	Tx6+	
44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	42		GND	
44CML-ITx8+Transmitter non-inverted data input45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	43	CML-I	Tx8-	Transmitter inverted data input
45GNDModule Ground46ReservedFor future use47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	44		Tx8+	
47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	45		GND	
47VS1Module Vender Specific 148VCCRx1+3.3V Power Supply49VS2Module Vender Specific 2	46		Reserved	For future use
48 VCCRx1 +3.3V Power Supply 49 VS2 Module Vender Specific 2	-			
49 VS2 Module Vender Specific 2				
	49			
	50		VS3	Module Vender Specific 3

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

51		GND	Module Ground
52	CML-O	RX7+	Receiver non-inverted data output
53	CML-O	RX7-	Receiver inverted data output
54		GND	Module Ground
55	CML-O	RX5+	Receiver non-inverted data output
56	CML-O	RX5-	Receiver inverted data output
57		GND	Module Ground
58		GND	Module Ground
59	CML-O	RX6-	Receiver inverted data output
60	CML-O	RX6+	Receiver non-inverted data output
61		GND	Module Ground
62	CML-O	RX8-	Receiver inverted data output
63	CML-O	RX8+	Receiver non-inverted data output
64		GND	Module Ground
65		NC	N0 Connect
66		Reserved	For future use
67		VCCTx1	+3.3V Power Supply
68		VCC2	+3.3V Power Supply
69		Reserved	For future use
70		GND	Module Ground ¹
71	CML-I	Tx7+	Transmitter non-inverted data input
72	CML-I	Tx7-	Transmitter inverted data input
73		GND	Module Ground ¹
74	CML-I	Tx5+	Transmitter non-inverted data input
75	CML-I	Tx5-	Transmitter inverted data input
76		GND	Module Ground

Note:

 Module circuit ground is isolated from module chassis ground within the module.
Open collector should be pulled up with 4.7K to 10K ohms on host board to a voltage between 3.15V and 3.6V.

Optical Interconnection Design Innovator

Figure 2. Electrical Pin-out Details

ModSelL Pin

The ModSelL is an input signal that must be pulled to Vcc in the QSFP-DD module. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP-DD modules on a single 2-wire interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host.

In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the ModSelL de-assert time after any QSFP-DD modules are deselected. Similarly, the host must wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL Pin

The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length (t_Reset_init) (See Table 13) initiates a complete module reset, returning all user module settings to their default state.

InitMode Pin

InitMode is an input signal. The InitMode signal must be pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in Section 7.5. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for signal description.

ModPrsL Pin

ModPrsL must be pulled up to Vcc Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output signal. The IntL signal is an open collector output and must be pulled to Vcc Host on the host board. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 3.

Figure 3. Host Board Power Supply Filtering

Optical Interface Lanes and Assignment

The optical interface port is a male MPO connector .The eight fiber positions on the left as shown in Figure 4, with the key up, are used for the optical transmit signals (Channel 1 through 8). The fiber positions on the right are used for the optical receive signals (Channel 8 through 1). The central eight fibers are physically present.

Figure 4. Optical Receptacle and Channel Orientation

DIAGNOSTIC MONITORING INTERFACE(OPTIONAL)

Digital diagnostics monitoring function is available on all Gigalight QSFP DD products. A 2-wire serial interface provides user to contact with module.

The structure of the memory is shown in Figure 5. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, e.g. Interrupt Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold setting, are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed.

The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Optical Interconnection Design Innovator

Page 00h Lower Page 0 128 (64 Bytes) Base ID Fields (3 Bytes) Read-Only 191 192 ID and Status Read-Only (32 Bytes) 2 Extended ID Read-Only 223 224 3 Device (15 Bytes) (16 Bytes) Interrupt Flags Read-Only Properties 239 240 Read-Only (Clear on read) 17 Vendor Specific (16 Bytes) 18 (8 Bytes) ID 255 Read-Only State Indicators 25 26 Read-Only Page 01h (Optional) (6 Bytes) Module Monitors 31 32 Read-Only 128 Application Code (128 Bytes) Table Read-Only (48 Bytes) 255 Channel Monitors Read-Only Page 02h (Optional) 79 128 User EEPROM (128 Bytes) 80 (22 Bytes) Data Read/Write Control 255 Read/Write 101 Page 03h (Optional) 102 128 (15 Bytes) Device (48 Bytes) Interrupt Masks Read/Write Thresholds Read-Only 175 116 176 Channel (48 Bytes) 117 Thresholds Read-Only 223 224 (2 Bytes) Vendor Specific (28 Bytes) Read/Write Extended Control Read/Write 118 251 252 255 (4 Bytes) 119 Firmware ID (4 Bytes) `Read-Only Password Change Read/Write Pages 04h-19h (Optional) Entry Area 122 128 Vendor Specific (128 Bytes) 123 Data Password Entry Read/Write (4 Bytes) 255 Read/Write Area Page 20h/21h (Optional) 126 127 128 WDM Control (128 Bytes) (1 Byte) and Data Read/Write Page Select Byte 255 Read/Write Pages 22h+ (Optional) 127 128 (128 Bytes) Reserved Read/Write 255

	.	
Address	Description	Туре
0 - 2	Id and Status (3 bytes)	Read-only
3 - 17	Interrupt Flags (15 bytes)	Read-only
18 - 25	State Indicators (8 bytes)	Read-only
26 - 31	Module card Monitors (6 bytes)	Read-only
32 - 79	Channel Monitors (48 bytes)	Read-only
80 - 101	Control Fields (22 bytes)	Read/Write
102 - 116	Interrupt Flag Masks (15 bytes)	Read/Write
117 - 118	Reserved	Read/Write
119 - 122	Password Change Area (4 bytes)	Write-Only
123 - 126	Password Entry Area (4 bytes)	Write-Only
127	Page Select Byte	Read/Write

Table 16- Lower Page Overview (Lower Page)	Table 16-	Lower Page	Overview	(Lower Page)
--	-----------	------------	----------	--------------

Figure 6. Low Memory Map

Optical Interconnection Design Innovator

Byte Address	Description	Туре
128-175	Module Thresholds (48 Bytes)	Read Only
176-223	Reserved (48 Bytes)	Read Only
224-225	Reserved (2 Bytes)	Read Only
226-239	Reserved (14 Bytes)	Read/Write
240-241	Channel Controls (2 Bytes)	Read/Write
242-253	Reserved (12 Bytes)	Read/Write
254-255	Reserved (2 Bytes)	Read/Write

Figure 7. Page 03 Memory Map

		Table 28- Upper	Page 0 Overview (Page 00h)
Address	Size	Name	Description
	(bytes)		
Base ID F	ields:	•	
128	1	Identifier	Identifier Type of module
129	1	Ext. Identifier	Extended Identifier
130	1	Connector Type	Code for media connector type
131-138	8	Specification	Code for electronic compatibility or optical
		compliance	compatibility
139	1	Encoding	Code for serial encoding algorithm
140	1	BR, nominal	Nominal bit rate, units of 100 MBits/s
141	1	Extended rate select	Tags for extended rate select compliance
		compliance	
142-146	5	Link length	Link length / transmission media
147	1	Device technology	Device technology
148-163	16	Vendor name	Vendor name (ASCII)
164	1	Extended Module	Extended Module codes for InfiniBand
165-167	3	Vendor OUI	Vendor IEEE company ID
168-183	16	Vendor PN	Part number provided by vendor (ASCII)
184-185	2	Vendor rev	Revision level for part number provided by
			vendor (ASCII)
186-187	2	Wavelength or Copper	Nominal laser wavelength

T-1-1- 00 11 . (D 001.1 ~ ~

~ -

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

		cable Attenuation	(wavelength=value/20 in nm) or copper cable attenuation in dB at 2.5GHz (Adrs 186) and 5.0GHz (Adrs 187)
188-189	2	Wavelength tolerance	Guaranteed range of laser wavelength(+/- value) from nominal wavelength.(wavelength Tolerance=value/200 in nm)
190	1	Max case temp.	Maximum case temperature in degrees C
191	1	CC_BASE	Check code for base ID fields (addresses 128-190 inclusive)
Extended	ID Fields	:	•
192-195	4	Options	Indicates which optional capabilities are implemented in the module
196-211	16	Vendor S/N	Vendor product serial number
212-219	8	Date Code	Vendor's manufacturing date code
220	1	Diagnostic Monitoring Type	Indicates which types of diagnostic monitoring are implemented in the module
221-222	2	Enhanced Options	Indicates which optional enhanced features are implemented in the module.
223	1	CC_EXT	Check code for the Extended ID Fields (addresses 192-222 inclusive)
224-238	15	Device Properties	Provides detailed information about the device
239	1	CC-PROP	Check code for the Device Properties Fields (addresses 224-2382 inclusive)
Vendor Sp	ecific ID) Fields:	
240-255	16	Vendor-Specific	Vendor-specific ID information

Figure 8. Page 00 Memory Map

Page02 is User EEPROM and its format decided by user.

The detail description of low memory and Page 00, Page 03 upper memory, please see SFF-8436 document.

Optical Interconnection Design Innovator

Timing for Soft Control and Status Functions

Parameter	Symbol	Min	Max	Unit	Conditions
	Max MgmtInit		2000	ms	Time from power on ² , hot plug or
MgmtInitDuration	Duration				rising edge of reset until completion
					of the MgmtInit State
ResetL Assert Time	t reset init	2		μs	Minimum pulse time on the ResetL
					signal to initiate a module reset.
IntL Assert Time	ton IntL		200	ms	Time from occurrence of condition
	_				triggering IntL until Vout:IntL=Vol
IntL Deassert Time	toff_IntL		500	μs	Time from clear on read ³ operation of
	_				associated flag until Vout:IntL=Voh.
					This includes deassert times for Rx
					LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton los		100	ms	Time from Rx LOS state to Rx LOS bit
	_				set (value = 1b) and IntL asserted.
Rx LOS Assert Time	ton losf		1	ms	Time from Rx LOS state to Rx LOS bit
(optional fast mode)	-				set (value = 1b) and IntL asserted.
Rx LOS Deassert Time	toff losf		3	ms	Time from signal present to negation
(optional fast mode)	_				of Rx LOS status bit.
Tx Fault Assert Time	ton Txfault		200	ms	Time from Tx Fault state to Tx Fault
	_				bit set (value=1b) and IntL asserted.
Flag Assert Time	ton flag		200	ms	Time from occurrence of condition
_					triggering flag to associated flag
					bit set (value=1b) and IntL asserted.
Mask Assert Time	ton mask		100	ms	Time from mask bit set (value=1b) ¹
	_				until associated IntL assertion is
					inhibited
Mask Deassert Time	toff mask		100	ms	Time from mask bit cleared
	_				(value=0b) ¹ until associated IntL
					operation resumes
Application or Rate	t ratesel		100	ms	Time from change of state of
Select Change Time	_				Application or Rate Select bit ¹ until
-					transmitter or receiver bandwidth is
					in conformance with appropriate
					specification
Note 1. Measured fr	om the rising	edge	of SDA	in th	he stop bit of the write transaction
					upply voltages reach and remain at or
above the minimum lev					
					, show hits of the word two section

Note 3. Measured from the rising edge of SDA in the stop bit of the read transaction

Optical Interconnection Design Innovator

Mechanical Dimensions

. Unless Otherwise Specified, Tolerance ±0. 1mm Figure 9. Mechanical Specifications

Regulatory Compliance

Gigalight GQD-MDO201-xxxC AOC are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard			
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50			
Laser Eye Safety	ΤÜV	EN 60825-1:2007 EN 60825-2:2004+A1+A2			
Electrical Safety	ΤÜV	EN 60950			
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87			

Complies with FDA performance standards for laser products except for deviations pursuant to Laser Noticed No. 50, dated June 24, 2007.

References

- 1. QSFP-DD MSA Rev5.0
- 2. Ethernet 100GBASE-SR4 IEEE802.3bm
- 3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.

CAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering Information

Part Number	Product Description
GQD-MDO201-xxxC	2x100GBASE-SR4 QSFP-DD Active Optical Cable, xxx is length of fiber cable, up to 70m on OM3 Multimode Fiber (MMF) and up to 100m on OM4 MMF.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Gigalight before they become applicable to any particular order or contract. In accordance with the Gigalight policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of Gigalight or others. Further details are available from any Gigalight sales representative.

E-mail: <u>sales@gigalight.com</u> Official Site: <u>www.gigalight.com</u>

Revision History

Revision	Date	Description
V0	Oct-21-2018	Advance Release.
V1	Feb-21-2019	Delete Built-in digital diagnostic function, change DIAGNOSTIC MONITORING INTERFAC to DIAGNOSTIC MONITORING INTERFAC (OPTIONAL).
V2	Jun-15-2020	Update QSFP-DD standard reference