

Optical Interconnection Design Innovator

P/N: GLQE-PC101-DXX

# **GIGALIGHT 100G QSFP28 immersion cooling extender**

#### Features

- ✓ Compliant QSFP MSA
- ✓ Typical insertion loss less 5dB@12.89GHz
- ✓ 100ohm differential impedance system
- ✓ 3.3V power supply
- ✓ I2C R/W function
- Status indicators with LED
- ✓ Low EMI radiation and crosstalk
- ✓ RoHS 6 compliant(lead free)

#### Applications

- ✓ Extend 100G/40G transceiver/AOC for liquid immersion link environment
- Protect device QSFP SMT connector
- ✓ provide I2C R/W and some status indicators with LED

#### Description

Gigalight can offer rich experience of immersion solution, that includes different form and speed transceivers/AOC product. Gigalight 100G QSFP28 immersion cooling extender (GLQE-PC101-DXX) is an important part of liquid immersion solution, normal QSFP form transceiver/AOC can be used for immersion environment with this product. This product include extender cage, cable, QSFP housing three parts, the cable length can be customized no more than 0.5m for extension, that can avoid the optical lens/engine/interface exposure to the liquid indirectly.



In addition, this product can provide I2C read/write, also can show the status indicators with LED for low speed electrical hardware pins. When insertion and removal frequently, this product can effectively protect the QSFP SMT connector of switch/NIC.

# Liquid cooling Advantage



Figure 1. Liquid cooling advantage

As the requirement of data traffic keeping growth and the heat flux emitted by datacenter internal chips increases constantly, traditional air cooling methods are under pressure. Liquid cooling technologies removes the heat more efficiently with dielectric fluids that have high heat capacity to improve the efficiency of energy in datacenter.

Gigalight solved the lack of optical transceivers which perform reliability in immersion even liquid immersion depth up to 10m, the Liquid cooling optical series transceiver is suitable for liquid cooling server & system, this series product are compatible with fluorinated liquid and mineral oils well.

Immersion cooling extender can also be a important role in liquid immersion solution, existing normal QSFP form transceiver/AOC can be adapted for immersion indirectly.





Optical Interconnection Design Innovator

## Figure 2.QSFP28 immersion cooling extender under liquid

# **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min | Мах | Unit |
|----------------------------|--------|-----|-----|------|
| Storage Temperature        | Ts     | -20 | 85  | °C   |
| Case Operating Temperature | Tc     | 0   | 70  | °C   |
| Humidity (non-condensing)  | Rh     | 5   | 95  | %    |

#### **Recommended Operating Conditions**

| Parameter                  | Symbol | Min | Typical | Мах | Unit    |
|----------------------------|--------|-----|---------|-----|---------|
| Operating Case Temperature | Tc     | -20 |         | 70  | °C      |
| Baud Rate per Lane         | fd     |     | 25.78   |     | GBaud/s |
| Humidity                   | Rh     | 5   |         | 85  | %       |

## Main Part assembly



## Figure 3.QSFP28 extender main part assembly

#### **Extender contact Pin Description**

| Pin | Logic | Symbol | Name/Description                    |
|-----|-------|--------|-------------------------------------|
| 1   |       | GND    | Module Ground <sup>Note5</sup>      |
| 2   | CML-I | Tx2-   | Transmitter inverted data input     |
| 3   | CML-I | Tx2+   | Transmitter non-inverted data input |
| 4   |       | GND    | Module Ground Note5                 |
| 5   | CML-I | Tx4-   | Transmitter inverted data input     |
| 6   | CML-I | Tx4+   | Transmitter non-inverted data input |



www.gigalight.com

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

**Optical Interconnection Design Innovator** 

Module Ground<sup>Note5</sup> GND 7 8 LVTTL-I MODSEIL Module Select<sup>Note6</sup> Module Reset<sup>Note6</sup> LVTTL-I 9 ResetL 10 VCCRx +3.3V Power Supply LVCMOS-I 11 SCL 2-wire Serial interface clock<sup>Note6</sup> 12 LVCMOS-I/O SDA 2-wire Serial interface data<sup>Note6</sup> Module Ground<sup>Note5</sup> 13 GND 14 CML-O **RX3+** Receiver non-inverted data output 15 CML-O RX3-Receiver inverted data output Module Ground<sup>Note5</sup> 16 GND 17 CML-O RX1+ Receiver non-inverted data output 18 CML-O **RX1-**Receiver inverted data output Module Ground<sup>Note5</sup> 19 GND Module Ground<sup>Note5</sup> 20 GND 21 CML-O RX2-Receiver inverted data output 22 Receiver non-inverted data output CML-O RX2+ Module Ground<sup>Note5</sup> 23 GND 24 CML-O RX4-Receiver inverted data output 25 CML-O RX4+ Receiver non-inverted data output Module Ground<sup>Note5</sup> 26 GND 27 ModPrsL LVTTL-O Module Present, internal pulled down to GND 28 Interrupt output, should be pulled up on host board<sup>2</sup> LVTTL-O IntL 29 VCCTx +3.3V Transmitter Power Supply 30 VCC1 +3.3V Power Supply Low Power Mode<sup>Note6</sup> 31 LVTTL-I LPMode 32 GND Module Ground<sup>Note5</sup> 33 CML-I Tx3+ Transmitter non-inverted data input CML-I 34 Tx3-Transmitter inverted data input 35 GND Module Ground<sup>Note5</sup> Tx1+ 36 CML-I Transmitter non-inverted data input 37 CML-I Tx1-Transmitter inverted data input 38 GND Module Ground<sup>Note5</sup>



Note:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector should be pulled up with 4.7K to 10K ohms on host board to a voltage between 3.15V and

3.6V.



Top Side Viewed from Top Bottom Side Viewed from Bottom







Wiring Patterns and connection diagram



www.gigalight.com

Optical Interconnection Design Innovator

|         |             | TABLE     | VIRING            | V          |                      |    |  |  |
|---------|-------------|-----------|-------------------|------------|----------------------|----|--|--|
|         | er housing) | P1(Extend |                   |            | P1(Extender contact) |    |  |  |
|         | GND         | 01        | $\rightarrow$     | <          | GND                  | 01 |  |  |
|         | TX2n        | 02        | $\rightarrow$     | ←          | TX2n                 | 02 |  |  |
|         | TX2p        | 03        | $\rightarrow$     | <          | TX2p                 | 03 |  |  |
|         | GND         | 04        | $\rightarrow$     | <          | GND                  | 04 |  |  |
|         | TX4n        | 05        | $\rightarrow$     | <          | TX4n                 | 05 |  |  |
|         | TX4p        | 06        | $\rightarrow$     | <          | TX4p                 | 06 |  |  |
|         | GND         | 07        | $\rightarrow$     | <          | GND                  | 07 |  |  |
| 4# LEC  | ModseIL     | 08        | $\longrightarrow$ | <          | ModseIL              | 08 |  |  |
| 5# LEC  | ResetL      | 09        | >                 | <          | ResetL               | 09 |  |  |
|         | SCL         | 11        | $\rightarrow$     | <          | SCL                  | 11 |  |  |
|         | SDA         | 12        | $\rightarrow$     | <          | SDA                  | 12 |  |  |
|         | GND         | 13        | $\rightarrow$     | <          | GND                  | 13 |  |  |
|         | RX3p        | 14        | $\rightarrow$     | <          | RX3p                 | 14 |  |  |
|         | RX3n        | 15        | >                 | <          | RX3n                 | 15 |  |  |
|         | GND         | 16        | >                 | <          | GND                  | 16 |  |  |
|         | RX1p        | 17        | $\rightarrow$     | <          | RX1p                 | 17 |  |  |
| 1       | RX1n        | 18        |                   | <          | RX1n                 | 18 |  |  |
|         | GND         | 19        | >                 | <          | GND                  | 19 |  |  |
| 1       | GND         | 20        |                   | <          | GND                  | 20 |  |  |
|         | RX2n        | 21        | $\rightarrow$     | <          | RX2n                 | 21 |  |  |
|         | RX2p        | 22        |                   | <          | RX2p                 | 22 |  |  |
| 7       | GND         | 23        | >                 | <          | GND                  | 23 |  |  |
| 1       | RX2n        | 24        |                   | <          | RX2n                 | 24 |  |  |
| 1       | RX2p        | 25        |                   | <          | RX2p                 | 25 |  |  |
| 1       | GND         | 26        | >                 |            | GND                  | 26 |  |  |
| 3# LEC  | ModPrsL     | 27        |                   | <b>−</b> ← | ModPrsL              | 27 |  |  |
| 4# LEC  | IntL        | 28        |                   |            | IntL                 | 28 |  |  |
|         | VccTx       | 29        |                   | <b>h</b>   | VccTx                | 29 |  |  |
| 1# 2# L | Vccl        | 30        |                   | <          | Vccl                 | 30 |  |  |
|         | VccRx       | 10        | L                 | μ.         | VccRx                | 10 |  |  |
| 8# LEC  | LPMode      | 31        | ~                 | <          | LPMode               | 31 |  |  |
| -       | GND         | 32        | ~                 | <          | GND                  | 32 |  |  |
| 1       | ТХЗр        | 33        |                   | <          | ТХ3р                 | 33 |  |  |
| 1       | TX3n        | 34        |                   | <          | TX3n                 | 34 |  |  |
| 1       | GND         | 35        | ~                 | <          | GND                  | 35 |  |  |
| 1       | TX1p        | 36        |                   | <          | TX1p                 | 36 |  |  |
| 1       | TX1n        | 37        |                   | <          | TX1n                 | 37 |  |  |
| 7       | GND         | 38        |                   | <          | GND                  | 38 |  |  |

Figure 6. Wiring Patterns



Optical Interconnection Design Innovator

#### Extender housing pin and

#### parts



Figure 7. Extender housing pin and parts

# **Regulatory Compliance**

Gigalight's 100GbE immersion cooling extender meet the requirements of the following standards:

| Feature                  | Standard                                                               |
|--------------------------|------------------------------------------------------------------------|
| Electrical Safety        | EN 62368-1: 2014<br>IEC 62368-1:2014<br>UL 62368-1:2014                |
| Environmental protection | Directive 2011/65/EU with amendment(EU)2015/863                        |
| CE EMC                   | EN55032: 2015<br>EN55035: 2017<br>EN61000-3-2:2014<br>EN61000-3-3:2013 |
| FCC                      | FCC Part 15, Subpart B; ANSI C63.4-2014                                |



# Ordering information

| Part Number    | Length | Description                                                     |
|----------------|--------|-----------------------------------------------------------------|
|                | 10cm   | 100G QSFP28 extender with high speed cable, with nylon jacket , |
| GLQE-PC101-D01 | TUCITI | 0.1meter length with connector and cage.                        |
| GLQE-PC101-D05 | 50cm   | 100G QSFP28 extender with high speed cable, with nylon jacket , |
|                |        | 0.5meter length with connector and cage.                        |

The length(meter) of GLQE-PC101-DXX is decimal and can be customizable.

#### **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

# sales@gigalight.com.cn http://www.gigalight.com

#### **Revision History**

| Revision | Date        | Description      |
|----------|-------------|------------------|
| V0       | 22-Apr-2023 | Advance Release. |